The core-shell structured Au@Bi2S3 nanorods have been prepared through direct in-situ growth of Bi2S3 at the surface of pre-synthesized gold nanorods.The product was characterized by X-ray diffraction,transmission ele...The core-shell structured Au@Bi2S3 nanorods have been prepared through direct in-situ growth of Bi2S3 at the surface of pre-synthesized gold nanorods.The product was characterized by X-ray diffraction,transmission electron microscopy and energy-dispersive X-ray spectroscopy.Then the obtained Au@Bi2S3 nanorods were coated onto glassy carbon electrode to act as a scaffold for fabrication of electrochemical DNA biosensor on the basis of the coordination of-NH2 modified on 5’-end of probe DNA and Au@Bi2S3.Electrochemical characterization assays demonstrate that the Au@Bi2S3 nanorods behave as an excellent electronic transport channel to promote the electron transfer kinetics and increase the effective surface area by their nanosize effect.The hybridization experiments reveal that the Au@Bi2S3 matrix-based DNA biosensor is capable of recognizing complementary DNA over a wide concentration ranging from 10 fmol/L to 1 nmol/L.The limit of detection was estimated to be 2 fmol/L(S/N=3).The biosensor also presents remarkable selectivity to distinguish fully complementa ry sequences from basemismatched and non-complementary ones,showing great promising in practical application.展开更多
For pursing high-performance supercapacitors,both of the design strategy and structural characteristic of electrode materials are crucial.Herein,we report the in-situ growth of flexible self-assembled 3D hollow tubula...For pursing high-performance supercapacitors,both of the design strategy and structural characteristic of electrode materials are crucial.Herein,we report the in-situ growth of flexible self-assembled 3D hollow tubular Cu_(2)S nanorods on Cu foam substrate(Cu_(2)S@Cu).The Cu substrate is simultaneously acted as a copper source and a collector,which reduces the contact resistance.Moreover,the highly ordered 3D unique structure increases the redox reactive sites and enhances the ion transmission effectively,resulting in greatly improved electrochemical performance.Based on the Cu_(2)S@Cu electrode,the supercapacitor exhibits high areal capacitance of 1000 mF cm^(-2) at a current density of 2 mA cm^(-2),and great cycle stability,maintaining 96.9% capacitance after 10,000 cycles.Furthermore,the supercapacitor also shows an excellent flexibility with no significant decrease in the twisting or bending state.The capacity retention rates are 99.8% and 86.1%,respectively,and finally recover to 99.3%,confirming its great potential in practical application for portable electronic devices.展开更多
This is the first report on the thermoelectric properties of a catalyst-free polyol method used to prepare stoichiometric Bi2-xCuxS3 samples, x = 0.1, 0.2, 0.3, 0.4, via hot pressing. Various systematic approaches to ...This is the first report on the thermoelectric properties of a catalyst-free polyol method used to prepare stoichiometric Bi2-xCuxS3 samples, x = 0.1, 0.2, 0.3, 0.4, via hot pressing. Various systematic approaches to arrive at in their stoichiometric compositions are explored precisely with introduction of excess precursor of S. X-ray diffraction data analysis using Rietveld refinement confirms a polyhedral orthorhombic crystal structure with a space group Pnma, in contrast to Pbnm reported earlier. Raman data further substantiates this. X-ray photoelectron spectroscopy confirms the valence states of the constituent elements (Bi^3+, Cu^2+, and S^2-) and energy dispersive X-ray analysis corroborates their compositions. The particle sizes of the pure Bi2S3 nanoparticles were 20, 35, and 82 nm as determined from the Scherrer formula, atomic force microscopy, and dynamic light scattering, respectively. Their transmission electron microscopy image shows rod-like nanostructures elongated in the 〈010〉 direction with an average diameter of 23 nm and a length of several hundreds of nanometers. A 34% improvement in the thermoelectric figure of merit is observed for Bi.6Cu0.4S3 as compared to pure Bi2S3 at 300 K.展开更多
The microwave-assisted hydrothermal synthesis of Bi 2S 3 na^no^rods was reported. The result showed that microwave irradiation can help to produce Bi 2S 3 nanorods in very short time. There is a negative feedback ...The microwave-assisted hydrothermal synthesis of Bi 2S 3 na^no^rods was reported. The result showed that microwave irradiation can help to produce Bi 2S 3 nanorods in very short time. There is a negative feedback effect which increases the degree of crystallinity in the reaction.展开更多
In this paper, Bi2S3 nanorods were successfully synthesized via a facile one-pot hydrothermal method and characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscop...In this paper, Bi2S3 nanorods were successfully synthesized via a facile one-pot hydrothermal method and characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. Then the Bi2S3 nanorods were deposited on Au interdigital electrodes by dip-coating to fabricate photodetectors. The photoresponse properties using Bi2S3 nanorods as a representative system showed a significantly enhanced conductivity and the current-voltage (I-V) characteristic exhibited about ca. 2 orders of magnitude larger response and decay time was than the dark current. The estimated to be -371.66 and 386 ms, respectively, indicating Bi2S3 may be an excellent candidate for high speed and high-sensitivity photoelectrical switches and light sensitive devices.展开更多
To fabricate a highly biocompatible nanoplatform enabling synergistic therapy and real-time imaging,novel Au@Bi2S3 core shell nanobones(NBs)(Au@Bi2S3 NBs)with Au nanorods as cores were synthesized.The combination of A...To fabricate a highly biocompatible nanoplatform enabling synergistic therapy and real-time imaging,novel Au@Bi2S3 core shell nanobones(NBs)(Au@Bi2S3 NBs)with Au nanorods as cores were synthesized.The combination of Au nanorods with Bi2S3 film made the Au@Bi2S3 NBs exhibit ultrahigh photothermal(PT)conversion efficiency,remarkable photoacoustic(PA)imaging and high computed tomography(CT)performance;these Au@Bi2S3 NBs thus are a promising nanotheranostic agent for PT/PA/CT imaging.Subsequently,poly(N-vinylpyrrolidone)-modified Au@Bi2S3 NBs(Au@Bi2S3-PVP NBs)were successfully loaded with the anticancer drug doxorubicin(DOX),and a satisfactory pH sensitive release profile was achieved,thus revealing the great potential of Au@Bi2S3-PVP NBs in chemotherapy as a drug carrier to deliver DOX into cancer cells.Both in vitro and in vivo investigations demonstrated that the Au@Bi2S3-PVP NBs possessed multiple desired features for cancer therapy,including extremely low toxicity,good biocompatibility,high drug loading ability,precise tumor targeting and effective accumulation.Highly efficient ablation of the human liver cancer cell HepG2 was achieved through Au@Bi2S3-PVP NB-mediated photothermal therapy(PTT).As both a contrast enhancement probe and therapeutic agent,Au@Bi2S3-PVP NBs provided outstanding NIR-triggered multi-modal PT/PA/CT imaging-guided PTT and effectively inhibited the growth of HepG2 liver cancer cells via synergistic chemo/PT therapy.展开更多
Bismuthinite (Bi2S3)nanostructures were prepared by a hydrothermal method with sodium ethylenediamine- tetraacetate (EDTA-Na2). The morphology of Bi2S3 nanostructures was changed from a nanorod to a nanoplate by p...Bismuthinite (Bi2S3)nanostructures were prepared by a hydrothermal method with sodium ethylenediamine- tetraacetate (EDTA-Na2). The morphology of Bi2S3 nanostructures was changed from a nanorod to a nanoplate by presence of the EDTA-Na2. The altered morphology was caused by the capping effect of EDTA-Na2 with Bi3+ ions, which induces the suboptimal growth direction due to partially blocking the preferential orientation direction. When the EDTA-Na2/Bi3+ molar ratio= 1, the growth of Bi2S3 nanostructures was not allowed due to the chelating effect of EDTA-Na2. The obtained Bi2S3 nanorods, stacked nanorods, nanoplates and nanoparticles were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron mi- croscopy (HRTEM) and selected area electron diffraction (SAED) pattern. A possible formation mechanism of these morphologies was proposed. The successful synthesis of various morphologies of nanostructured Bi2S3 may open up new possibilities for thermoelectric, electronic and optoelectronic uses of nanodevices based on Bi2S3 nanostructure.展开更多
Crystalline nanostructures possess defects/vacancies that affect their physical and chemical properties. In this regard, the electronic structure of materials can be effectively regulated through defect engineering; t...Crystalline nanostructures possess defects/vacancies that affect their physical and chemical properties. In this regard, the electronic structure of materials can be effectively regulated through defect engineering; therefore, the correlation between defects/vacancies and the properties of a material has attracted extensive attention. Here, we report the synthesis of Bi2S3 microspheres by nanorod assemblies with exposed {211} facets, and the investigation of the types and concentrations of defects/vacancies by means of positron annihilation spectrometry. Our studies revealed that an increase in the calcined temperature, from 350 to 400 ℃, led the predominant defect/vacancy densities to change from isolated bismuth vacancies (VBi) to septuple Bi3+-sulfur vacancy associates (VBiBiBiSSSS). Furthermore, the concentration of septuple BiB+-sulfur vacancy associates increased as the calcined temperature was increased from 400 to 450 ℃. The characterized transient photocurrent spectrum demonstrates that the photocurrent values closely correlate with the types and concentrations of the predominant defects/vacancies. Our theoretical computation, through first principles, showed that VBiBiBiSSSS strongly absorbs I2(sol), easily desorbs I-(sol), and enhances the electrocatalytic activity of the nanostructures.展开更多
基金supported by the National Natural Science Foundation of China (Nos.21802064,21275127)Natural Science Foundation of Fujian Province,China (Nos.2018J01435,2017J01419)Foundation of Key Laboratory of Sensor Analysis of Tumor Marker,Ministry of Education,Qingdao University of Science and Technology
文摘The core-shell structured Au@Bi2S3 nanorods have been prepared through direct in-situ growth of Bi2S3 at the surface of pre-synthesized gold nanorods.The product was characterized by X-ray diffraction,transmission electron microscopy and energy-dispersive X-ray spectroscopy.Then the obtained Au@Bi2S3 nanorods were coated onto glassy carbon electrode to act as a scaffold for fabrication of electrochemical DNA biosensor on the basis of the coordination of-NH2 modified on 5’-end of probe DNA and Au@Bi2S3.Electrochemical characterization assays demonstrate that the Au@Bi2S3 nanorods behave as an excellent electronic transport channel to promote the electron transfer kinetics and increase the effective surface area by their nanosize effect.The hybridization experiments reveal that the Au@Bi2S3 matrix-based DNA biosensor is capable of recognizing complementary DNA over a wide concentration ranging from 10 fmol/L to 1 nmol/L.The limit of detection was estimated to be 2 fmol/L(S/N=3).The biosensor also presents remarkable selectivity to distinguish fully complementa ry sequences from basemismatched and non-complementary ones,showing great promising in practical application.
基金funded by the National Natural Science Foundation of China(No.51672037,61727818 and 61604031)the subproject of the National Key and Development Program of China(2017YFC0602102)the Department of Science and Technology of Sichuan Province(2019YFH0009).
文摘For pursing high-performance supercapacitors,both of the design strategy and structural characteristic of electrode materials are crucial.Herein,we report the in-situ growth of flexible self-assembled 3D hollow tubular Cu_(2)S nanorods on Cu foam substrate(Cu_(2)S@Cu).The Cu substrate is simultaneously acted as a copper source and a collector,which reduces the contact resistance.Moreover,the highly ordered 3D unique structure increases the redox reactive sites and enhances the ion transmission effectively,resulting in greatly improved electrochemical performance.Based on the Cu_(2)S@Cu electrode,the supercapacitor exhibits high areal capacitance of 1000 mF cm^(-2) at a current density of 2 mA cm^(-2),and great cycle stability,maintaining 96.9% capacitance after 10,000 cycles.Furthermore,the supercapacitor also shows an excellent flexibility with no significant decrease in the twisting or bending state.The capacity retention rates are 99.8% and 86.1%,respectively,and finally recover to 99.3%,confirming its great potential in practical application for portable electronic devices.
文摘This is the first report on the thermoelectric properties of a catalyst-free polyol method used to prepare stoichiometric Bi2-xCuxS3 samples, x = 0.1, 0.2, 0.3, 0.4, via hot pressing. Various systematic approaches to arrive at in their stoichiometric compositions are explored precisely with introduction of excess precursor of S. X-ray diffraction data analysis using Rietveld refinement confirms a polyhedral orthorhombic crystal structure with a space group Pnma, in contrast to Pbnm reported earlier. Raman data further substantiates this. X-ray photoelectron spectroscopy confirms the valence states of the constituent elements (Bi^3+, Cu^2+, and S^2-) and energy dispersive X-ray analysis corroborates their compositions. The particle sizes of the pure Bi2S3 nanoparticles were 20, 35, and 82 nm as determined from the Scherrer formula, atomic force microscopy, and dynamic light scattering, respectively. Their transmission electron microscopy image shows rod-like nanostructures elongated in the 〈010〉 direction with an average diameter of 23 nm and a length of several hundreds of nanometers. A 34% improvement in the thermoelectric figure of merit is observed for Bi.6Cu0.4S3 as compared to pure Bi2S3 at 300 K.
基金ProjectsupportedbytheNaturalScienceFoundationofChina (No .2 97730 0 1)andtheScienceFoundationofAnhuiProvinceEduca tionAdministration (No .2 0 0 2kj115 )
文摘The microwave-assisted hydrothermal synthesis of Bi 2S 3 na^no^rods was reported. The result showed that microwave irradiation can help to produce Bi 2S 3 nanorods in very short time. There is a negative feedback effect which increases the degree of crystallinity in the reaction.
文摘In this paper, Bi2S3 nanorods were successfully synthesized via a facile one-pot hydrothermal method and characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. Then the Bi2S3 nanorods were deposited on Au interdigital electrodes by dip-coating to fabricate photodetectors. The photoresponse properties using Bi2S3 nanorods as a representative system showed a significantly enhanced conductivity and the current-voltage (I-V) characteristic exhibited about ca. 2 orders of magnitude larger response and decay time was than the dark current. The estimated to be -371.66 and 386 ms, respectively, indicating Bi2S3 may be an excellent candidate for high speed and high-sensitivity photoelectrical switches and light sensitive devices.
基金This work was financially supported by the Natural Science Foundation of Shanghai(19ZR1434800,19ZR1461900)the National Natural Science Foundation of China(21305090)+1 种基金the Fundamental Research Funds for the Central Universities(to Shuang Zhou)The authors greatly appreciated these supports.
文摘To fabricate a highly biocompatible nanoplatform enabling synergistic therapy and real-time imaging,novel Au@Bi2S3 core shell nanobones(NBs)(Au@Bi2S3 NBs)with Au nanorods as cores were synthesized.The combination of Au nanorods with Bi2S3 film made the Au@Bi2S3 NBs exhibit ultrahigh photothermal(PT)conversion efficiency,remarkable photoacoustic(PA)imaging and high computed tomography(CT)performance;these Au@Bi2S3 NBs thus are a promising nanotheranostic agent for PT/PA/CT imaging.Subsequently,poly(N-vinylpyrrolidone)-modified Au@Bi2S3 NBs(Au@Bi2S3-PVP NBs)were successfully loaded with the anticancer drug doxorubicin(DOX),and a satisfactory pH sensitive release profile was achieved,thus revealing the great potential of Au@Bi2S3-PVP NBs in chemotherapy as a drug carrier to deliver DOX into cancer cells.Both in vitro and in vivo investigations demonstrated that the Au@Bi2S3-PVP NBs possessed multiple desired features for cancer therapy,including extremely low toxicity,good biocompatibility,high drug loading ability,precise tumor targeting and effective accumulation.Highly efficient ablation of the human liver cancer cell HepG2 was achieved through Au@Bi2S3-PVP NB-mediated photothermal therapy(PTT).As both a contrast enhancement probe and therapeutic agent,Au@Bi2S3-PVP NBs provided outstanding NIR-triggered multi-modal PT/PA/CT imaging-guided PTT and effectively inhibited the growth of HepG2 liver cancer cells via synergistic chemo/PT therapy.
文摘Bismuthinite (Bi2S3)nanostructures were prepared by a hydrothermal method with sodium ethylenediamine- tetraacetate (EDTA-Na2). The morphology of Bi2S3 nanostructures was changed from a nanorod to a nanoplate by presence of the EDTA-Na2. The altered morphology was caused by the capping effect of EDTA-Na2 with Bi3+ ions, which induces the suboptimal growth direction due to partially blocking the preferential orientation direction. When the EDTA-Na2/Bi3+ molar ratio= 1, the growth of Bi2S3 nanostructures was not allowed due to the chelating effect of EDTA-Na2. The obtained Bi2S3 nanorods, stacked nanorods, nanoplates and nanoparticles were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron mi- croscopy (HRTEM) and selected area electron diffraction (SAED) pattern. A possible formation mechanism of these morphologies was proposed. The successful synthesis of various morphologies of nanostructured Bi2S3 may open up new possibilities for thermoelectric, electronic and optoelectronic uses of nanodevices based on Bi2S3 nanostructure.
文摘Crystalline nanostructures possess defects/vacancies that affect their physical and chemical properties. In this regard, the electronic structure of materials can be effectively regulated through defect engineering; therefore, the correlation between defects/vacancies and the properties of a material has attracted extensive attention. Here, we report the synthesis of Bi2S3 microspheres by nanorod assemblies with exposed {211} facets, and the investigation of the types and concentrations of defects/vacancies by means of positron annihilation spectrometry. Our studies revealed that an increase in the calcined temperature, from 350 to 400 ℃, led the predominant defect/vacancy densities to change from isolated bismuth vacancies (VBi) to septuple Bi3+-sulfur vacancy associates (VBiBiBiSSSS). Furthermore, the concentration of septuple BiB+-sulfur vacancy associates increased as the calcined temperature was increased from 400 to 450 ℃. The characterized transient photocurrent spectrum demonstrates that the photocurrent values closely correlate with the types and concentrations of the predominant defects/vacancies. Our theoretical computation, through first principles, showed that VBiBiBiSSSS strongly absorbs I2(sol), easily desorbs I-(sol), and enhances the electrocatalytic activity of the nanostructures.