The current bottleneck facing further developments in fuel cells is the lack of durable electrocatalysts with satisfactory activity. In this study, a simple and fast one-pot wet-chemical method is proposed to synthesi...The current bottleneck facing further developments in fuel cells is the lack of durable electrocatalysts with satisfactory activity. In this study, a simple and fast one-pot wet-chemical method is proposed to synthesize novel Au@Pt star-like bimetallic nanocrystals (Au@Pt SLNCs) with a low Pt/Au ratio of 1:4, which show great electrocatalytic properties and outstanding stability toward the electro-oxidation reactions commonly found in fuel cells. The star-like Au core (90±20 nm) is partially coated with 5 nm Pt nanocluster shells, a morphology which creates a large amount of boundaries and edges, thus tuning the surface electronic structure as demonstrated by X-ray photoelectron spectroscopy and CO-stripping measurements. This promotes excellent electrocatalytic performance towards the formic acid oxidation reaction in acidic media and the ethanol oxidation reaction in alkaline media, compared to commercial Pt or Au@Pt triangular nanoprisms, in which the Au core is fully coated by a Pt shell. Au@Pt SLNCs have the highest current density within the dehydrogenation potential range, needing the least potential to achieve a certain current density as well as the highest long-term stability. Because of the small amount of Pt usage, very fast synthesis, excellent electrocatalytic activity and durability, the proposed Au@Pt SLNCs have a promising practical application in fuel cells.展开更多
A power-law (y = cx<sup>n</sup>) signature between process energy budget (kJ) and process energy density (kJ·ml<sup>-1</sup>) of microwave-assisted synthesis of silver and gold nanostructu...A power-law (y = cx<sup>n</sup>) signature between process energy budget (kJ) and process energy density (kJ·ml<sup>-1</sup>) of microwave-assisted synthesis of silver and gold nanostructures has been recently described [Law and Denis. AJAC, 14(4), 149-174, (2023)]. This study explores this relation further for palladium, platinum, and zinc oxide nanostructures. Parametric cluster analysis and statistical analysis is used to test the power-law signature of over four orders of magnitude as a function of six microwave applicator-types metal precursor, non-Green Chemistry synthesis and claimed Green Chemistry. It is found that for the claimed Green Chemistry, process energy budget ranges from 0.291 to 900 kJ, with a residual error ranging between −33 to +25.9 kJ·ml<sup>-1</sup>. The non-Green Chemistry synthesis has a higher process energy budget range from 3.2 kJ to 3.3 MJ, with a residual error of −33.3 to +245.3 kJ·ml<sup>-1</sup>. It is also found that the energy profile over time produced by software controlled digestion applicators is poorly reported which leads to residual error problematic outliers that produce possible phase-transition in the power-law signature. The original Au and Ag database and new Pd, Pt and ZnO database (with and without problematic outliers) yield a global microwave-assisted synthesis power-law signature constants of c = 0.7172 ± 0.3214 kJ·ml<sup>-1</sup> at x-axes = 0.001 kJ, and the exponent, n = 0.791 ± 0.055. The information in this study is aimed to understand variations in historical microwave-assisted synthesis processes, and develop new scale-out synthesis through process intensification.展开更多
文摘The current bottleneck facing further developments in fuel cells is the lack of durable electrocatalysts with satisfactory activity. In this study, a simple and fast one-pot wet-chemical method is proposed to synthesize novel Au@Pt star-like bimetallic nanocrystals (Au@Pt SLNCs) with a low Pt/Au ratio of 1:4, which show great electrocatalytic properties and outstanding stability toward the electro-oxidation reactions commonly found in fuel cells. The star-like Au core (90±20 nm) is partially coated with 5 nm Pt nanocluster shells, a morphology which creates a large amount of boundaries and edges, thus tuning the surface electronic structure as demonstrated by X-ray photoelectron spectroscopy and CO-stripping measurements. This promotes excellent electrocatalytic performance towards the formic acid oxidation reaction in acidic media and the ethanol oxidation reaction in alkaline media, compared to commercial Pt or Au@Pt triangular nanoprisms, in which the Au core is fully coated by a Pt shell. Au@Pt SLNCs have the highest current density within the dehydrogenation potential range, needing the least potential to achieve a certain current density as well as the highest long-term stability. Because of the small amount of Pt usage, very fast synthesis, excellent electrocatalytic activity and durability, the proposed Au@Pt SLNCs have a promising practical application in fuel cells.
文摘A power-law (y = cx<sup>n</sup>) signature between process energy budget (kJ) and process energy density (kJ·ml<sup>-1</sup>) of microwave-assisted synthesis of silver and gold nanostructures has been recently described [Law and Denis. AJAC, 14(4), 149-174, (2023)]. This study explores this relation further for palladium, platinum, and zinc oxide nanostructures. Parametric cluster analysis and statistical analysis is used to test the power-law signature of over four orders of magnitude as a function of six microwave applicator-types metal precursor, non-Green Chemistry synthesis and claimed Green Chemistry. It is found that for the claimed Green Chemistry, process energy budget ranges from 0.291 to 900 kJ, with a residual error ranging between −33 to +25.9 kJ·ml<sup>-1</sup>. The non-Green Chemistry synthesis has a higher process energy budget range from 3.2 kJ to 3.3 MJ, with a residual error of −33.3 to +245.3 kJ·ml<sup>-1</sup>. It is also found that the energy profile over time produced by software controlled digestion applicators is poorly reported which leads to residual error problematic outliers that produce possible phase-transition in the power-law signature. The original Au and Ag database and new Pd, Pt and ZnO database (with and without problematic outliers) yield a global microwave-assisted synthesis power-law signature constants of c = 0.7172 ± 0.3214 kJ·ml<sup>-1</sup> at x-axes = 0.001 kJ, and the exponent, n = 0.791 ± 0.055. The information in this study is aimed to understand variations in historical microwave-assisted synthesis processes, and develop new scale-out synthesis through process intensification.