Metal-semiconductor Janus nanostructures with asymmetry and directionality have recently aroused significant interest,both in fundamental light-matter interactions mechanism and in technological applications.Here we r...Metal-semiconductor Janus nanostructures with asymmetry and directionality have recently aroused significant interest,both in fundamental light-matter interactions mechanism and in technological applications.Here we report the synthesis of different Au-ZnO Janus nanostructures via a facile one-pot colloid method.The growth mechanism is revealed by a series of designed synthesis experiments.The light absorption properties are determined by both the decrease of dipole oscillations of the free electrons and the plasmon-induced hot-electron transfer.Moreover,the finite-difference time-domain(FDTD)simulation method is used to elucidate the electric field distributions of these Janus nanostructures.展开更多
文中采用一种基于微悬臂梁传感器的检测系统,实现了对Au-半导体复合纳米材料的微热量检测。根据光杠杆检测的方法研究了Au-半导体复合纳米材料光热转换散发热量对微悬臂梁挠度的影响。为验证系统对此类材料微热量检测的适用性,实验选用...文中采用一种基于微悬臂梁传感器的检测系统,实现了对Au-半导体复合纳米材料的微热量检测。根据光杠杆检测的方法研究了Au-半导体复合纳米材料光热转换散发热量对微悬臂梁挠度的影响。为验证系统对此类材料微热量检测的适用性,实验选用了已知在530 nm处光热吸收峰的Au-ZnO粉末样品材料,分别取多组不同质量的样品材料进行检测,通过最小二乘法拟合出温度变化与微悬臂梁偏移量之间的关系。结果显示:温度变化与微悬臂梁偏移量呈线性关系,且0.1 mm 2面积的样品薄膜拟合曲线的线性相关系数为0.9961。比较温度检测值与实验系统的拟合值,结果基本一致,验证了系统的可靠性。展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11274370 and 51471185)the National Key Research and Development Program of China(Grant Nos.2016YFJC020013 and 2018FYA0305800)
文摘Metal-semiconductor Janus nanostructures with asymmetry and directionality have recently aroused significant interest,both in fundamental light-matter interactions mechanism and in technological applications.Here we report the synthesis of different Au-ZnO Janus nanostructures via a facile one-pot colloid method.The growth mechanism is revealed by a series of designed synthesis experiments.The light absorption properties are determined by both the decrease of dipole oscillations of the free electrons and the plasmon-induced hot-electron transfer.Moreover,the finite-difference time-domain(FDTD)simulation method is used to elucidate the electric field distributions of these Janus nanostructures.
文摘文中采用一种基于微悬臂梁传感器的检测系统,实现了对Au-半导体复合纳米材料的微热量检测。根据光杠杆检测的方法研究了Au-半导体复合纳米材料光热转换散发热量对微悬臂梁挠度的影响。为验证系统对此类材料微热量检测的适用性,实验选用了已知在530 nm处光热吸收峰的Au-ZnO粉末样品材料,分别取多组不同质量的样品材料进行检测,通过最小二乘法拟合出温度变化与微悬臂梁偏移量之间的关系。结果显示:温度变化与微悬臂梁偏移量呈线性关系,且0.1 mm 2面积的样品薄膜拟合曲线的线性相关系数为0.9961。比较温度检测值与实验系统的拟合值,结果基本一致,验证了系统的可靠性。