There are two theories regarding the origin of the remarkable synergistic effect observed in Au‐Ag bimetallic catalysts when applied to various oxidative reactions. One is based on the importance of the contact inter...There are two theories regarding the origin of the remarkable synergistic effect observed in Au‐Ag bimetallic catalysts when applied to various oxidative reactions. One is based on the importance of the contact interfaces between AgOx regions and the surface of the bulk Au as active working sites, while the other holds that charge transfer from Ag to Au in a surface Au‐Ag alloy causes the catalytic activity. One key point in examining these theories and determining the origin of the synergy in‐volves determining whether or not Ag exists as an oxide or as a metallic alloy on the Au surface. To confirm that enhanced activity results from contact between Ag2O and Au nanoparticles (NPs), a comparative study of catalytic CO oxidation over Au/Ag2O and Ag2O was performed in the present work, using a closed recirculation reaction system. A reaction mixture consisting of a stoichiometric composition of CO and O2 (CO/O2=2/1) was supplied to both catalysts and the resulting pressure decrease rates were tracked, from which the amounts of gas consumed as well as the quantity of CO2 produced were determined. The steady state reactions of both Au/Ag2O and Ag2O did not lead to any meaningful difference in the rate of pressure decrease during the oxidation. The pressure decrease over both catalysts was attributed to the reduction of surface lattice O on Ag2O by CO. The results obtained for Au/Ag2O are in good agreement with previous data resulting from the use of Ag‐contaminated Au powder (Ag/Au‐b) having an oxidized surfaces. This finding suggests that the perimeters between AgOx zones and the bulk Au surface may not function as active sites during CO oxidation. A review of previous results obtained with Ag/Au‐b specimens having so‐called steady state surfaces indicates that AgOx species in such materials are reduced to the 0 state to form a Ag‐Au alloy that provides the active sites.展开更多
CO_(2)electrochemical reduction reaction(CO_(2)RR)to formate is a hopeful pathway for reducing CO_(2)and producing high-value chemicals,which needs highly selective catalysts with ultra-broad potential windows to meet...CO_(2)electrochemical reduction reaction(CO_(2)RR)to formate is a hopeful pathway for reducing CO_(2)and producing high-value chemicals,which needs highly selective catalysts with ultra-broad potential windows to meet the industrial demands.Herein,the nanorod-like bimetallic ln_(2)O_(3)/Bi_(2)O_(3)catalysts were successfully synthesized by pyrolysis of bimetallic InBi-MOF precursors.The abundant oxygen vacancies generated from the lattice mismatch of Bi_(2)O_(3)and ln_(2)O_(3)reduced the activation energy of CO_(2)to*CO_(2)·^(-)and improved the selectivity of*CO_(2)·^(-)to formate simultaneously.Meanwhile,the carbon skeleton derived from the pyrolysis of organic framework of InBi-MOF provided a conductive network to accelerate the electrons transmission.The catalyst exhibited an ultra-broad applied potential window of 1200 mV(from-0.4 to-1.6 V vs RHE),relativistic high Faradaic efficiency of formate(99.92%)and satisfactory stability after 30 h.The in situ FT-IR experiment and DFT calculation verified that the abundant oxygen vacancies on the surface of catalysts can easily absorb CO_(2)molecules,and oxygen vacancy path is dominant pathway.This work provides a convenient method to construct high-performance bimetallic catalysts for the industrial application of CO_(2)RR.展开更多
Synergic catalytic effect between active sites and supports greatly determines the catalytic activity for the aerobic oxidative desulfurization of fuel oils.In this work,Ni-doped Co-based bimetallic metal-organic fram...Synergic catalytic effect between active sites and supports greatly determines the catalytic activity for the aerobic oxidative desulfurization of fuel oils.In this work,Ni-doped Co-based bimetallic metal-organic framework(CoNi-MOF)is fabricated to disperse N-hydroxyphthalimide(NHPI),in which the whole catalyst provides plentiful synergic catalytic effect to improve the performance of oxidative desulfurization(ODS).As a bimetallic MOF,the second metal Ni doping results in the flower-like morphology and the modification of electronic properties,which ensure the exposure of NHPI and strengthen the synergistic effect of the overall catalyst.Compared with the monometallic Co-MOF and naked NHPI,the NHPI@CoNi-MOF triggers the efficient activation of molecular oxygen and improves the ODS performance without an initiator.The sulfur removal of dibenzothiophene-based model oil reaches 96.4%over the NHPI@CoNi-MOF catalyst in 8 h of reaction.Furthermore,the catalytic product of this aerobic ODS reaction is sulfone,which is adsorbed on the catalyst surface due to the difference in polarity.This work provides new insight and strategy for the design of a strong synergic catalytic effect between NHPI and bimetallic supports toward high-activity aerobic ODS materials.展开更多
Designing efficient and long-lasting non-metal electrocatalysts is an urgent task for addressing the issue of kinetic hysteresis in electrochemical oxidation reactions.The bimetallic hydroxides,catalyzing the oxygen e...Designing efficient and long-lasting non-metal electrocatalysts is an urgent task for addressing the issue of kinetic hysteresis in electrochemical oxidation reactions.The bimetallic hydroxides,catalyzing the oxygen evolution reaction(OER),have significant research potential because hydroxide reconstruction to generate an active phase is a remarkable advantage.Herein,the complete reconstruction of ultrathin CoNi(OH)_(2) nanosheets was achieved by embedding Ag nanoparticles into the hydroxide to induce a spontaneous redox reaction(SRR),forming heterojunction Ag@CoNi(OH)_(2) for bifunctional hydrolysis.Theoretical calculations and in situ Raman and ex situ characterizations revealed that the inductive effect of the Ag cation redistributed the charge to promote phase transformation to highly activate Ag-modified hydroxides.The Co-Ni dual sites in Co/NiOOH serve as novel active sites for optimizing the intermediates,thereby weakening the barrier formed by OOH^*.Ag@CoNi(OH)_(2) required a potential of 1.55 V to drive water splitting at a current density of 10 mA cm^(-2),with nearly 98.6% Faraday efficiency.Through ion induction and triggering of electron regulation in the OER via the synergistic action of the heterogeneous interface and surface reconstruction,this strategic design can overcome the limited capacity of bimetallic hydroxides and bridge the gap between the basic theory and industrialization of water decomposition.展开更多
Developing bimetallic catalysts is an effective strategy for enhancing the activity and selectivity of electrochemical CO_(2) reduction reactions,where understanding the structure-activity relationship is essential fo...Developing bimetallic catalysts is an effective strategy for enhancing the activity and selectivity of electrochemical CO_(2) reduction reactions,where understanding the structure-activity relationship is essential for catalyst design.Herein,we prepared two Cu-Ag bimetallic catalysts with Ag nanoparticles attached to the top or the bottom of Cu nanowires.When tested in a flow cell,the Cu-Ag catalyst with Ag nanoparticles on the bottom achieved a faradaic efficiency of 54%for ethylene production,much higher than the catalyst with Ag nanoparticles on the top.The catalysts were further studied in the H-cell and zero-gap MEA cell.It was found that placing the two metals in the intensified reaction zone is crucial to triggering the tandem reaction of bimetallic catalysts.Our work elucidates the structure-activity relationship of bimetallic catalysts for CO_(2) reduction and demonstrates the importance of considering both catalyst structures and cell characteristics to achieve high activity and selectivity.展开更多
The development of earth-abundant electrocatalysts with high performance for electrochemical CO_(2)reduction(ECR)is of great significance.Cu-based catalysts have been widely investigated for ECR due to their unique ab...The development of earth-abundant electrocatalysts with high performance for electrochemical CO_(2)reduction(ECR)is of great significance.Cu-based catalysts have been widely investigated for ECR due to their unique ability to generate various carbonaceous products,but directing selectivity toward one certain product and identifying the real active sites during ECR are still full of challenge.Here,after the incorporation of CdO into CuO,the Cu_(0.5)Cd_(0.5)-O catalyst achieves a 10.3-fold enhancement for CO selectivity in comparison with CuO,and a CO faradic efficiency nearly 90%with a current density around20 mA cm^(-2)could maintain at least 60 h.Interestingly,a wide CO/H_(2)ratio(0.07-10)is reached on Cu_(x)Cd_(1-x)-O catalysts by varying the Cu/Cd ratio,demonstrating the potential of syngas production using such catalysts.The results of ex situ XRD,XPS,and in situ Raman reveal that the real active sites of Cu_(0.5)Cd_(0.5)-O catalysts for CO production during ECR reaction are the reconstructed mixed phases of CuCd alloy and CdCO_(3).In situ FTIR and theoretical calculations further implicate the presence of Cd related species promotes the CO desorption and inhibits the H_(2)evolution,thus leading to an enhanced CO generation.展开更多
Two-dimensional(2D)catalytic ozonation membranes are promising for the treatment of micropollutants in wastewater due to simultaneous ozone-catalyzed degradation and membrane filtration processes.However,it remains ch...Two-dimensional(2D)catalytic ozonation membranes are promising for the treatment of micropollutants in wastewater due to simultaneous ozone-catalyzed degradation and membrane filtration processes.However,it remains challenging for 2D catalytic ozonation membranes to efficiently degrade micropollutants due to low mass-transfer efficiency and poor catalytic activity.Herein,Fe/Mn bimetallic metal-organic framework(MOF)intercalated lamellar MnO_(2) membranes with fast and robust ozone-catalyzed mass-transfer channels were developed on the surface of the hollow fiber ceramic membrane(HFCM)to obtain 2D Fe/Mn-MOF@MnO_(2)-HFCM for efficiently degrading micropollutants in wastewater.The intercalation of Fe/Mn-MOF expanded the interlayer spacing of the MnO_(2) membrane,thereby providing abundant transport channels for rapid passage of water.More notably,the Fe/Mn-MOF provided enriched reactive sites as well as high electron transfer efficiency based on the redox cycling between Mn^(3+)/Mn^(4+) and Fe^(2+)/Fe^(3+),ensuring the effective catalytic oxidative degradation of micropollutants including tetracycline hydrochloride(TCH),methylene blue,and methyl blue.Moreover,the carboxyl groups on the MOF formed covalent bonds(-COO-)with the hydroxyl groups in MnO_(2) between layers,which increased the interaction between MnO_(2) nanosheets to form stable interlayer channels.Specifically,the optimal composite membrane achieved a high removal rate of TCH micropollutant(93.4%),high water treatment capacity(282 L·m^(-2)·h^(-1)·MPa^(-1)),and excellent longterm stability(1200 min).This study provides a simple and easily scalable strategy to construct fast,efficient,and stable 2D catalytic mass-transfer channels for the efficient treatment of micropollutants in wastewater.展开更多
A composite solid electrolyte comprising a Cu-Al bimetallic metal-organic framework(CAB),lithium salt(LiTFSI)and polyethylene oxide(PEO)was fabricated through molecular grafting to enhance the ionic conductivity of th...A composite solid electrolyte comprising a Cu-Al bimetallic metal-organic framework(CAB),lithium salt(LiTFSI)and polyethylene oxide(PEO)was fabricated through molecular grafting to enhance the ionic conductivity of the PEO-based electrolytes.Experimental and molecular dynamics simulation results indicated that the electrolyte with 10 wt.%CAB(PL-CAB-10%)exhibits high ionic conductivity(8.42×10~(-4)S/cm at 60℃),high Li+transference number(0.46),wide electrochemical window(4.91 V),good thermal stability,and outstanding mechanical properties.Furthermore,PL-CAB-10%exhibits excellent cycle stability in both Li-Li symmetric battery and Li/PL-CAB-10%/LiFePO4 asymmetric battery setups.These enhanced performances are primarily attributable to the introduction of the versatile CAB.The abundant metal sites in CAB can react with TFSI~-and PEO through Lewis acid-base interactions,promoting LiTFSI dissociation and improving ionic conductivity.Additionally,regular pores in CAB provide uniformly distributed sites for cation plating during cycling.展开更多
Developing the alternative supported noble metal catalysts with low cost,high catalytic efficiency,and good resistance toward carbon dioxide and water vapor is critically demanded for the oxidative removal of volatile...Developing the alternative supported noble metal catalysts with low cost,high catalytic efficiency,and good resistance toward carbon dioxide and water vapor is critically demanded for the oxidative removal of volatile organic compounds(VOCs).In this work,we prepared the mesoporous chromia-supported bimetallic Co and Ni single-atom(Co_(1)Ni_(1)/meso-Cr_(2)O_(3))and bimetallic Co and Ni nanoparticle(Co_(NP)Ni_(NP)/mesoCr_(2)O_(3))catalysts adopting the one-pot polyvinyl pyrrolidone(PVP)-and polyvinyl alcohol(PVA)-protecting approaches,respectively.The results indicate that the Co_(1)Ni_(1)/meso-Cr_(2)O_(3)catalyst exhibited the best catalytic activity for n-hexane(C_(6)H_(14))combustion(T_(50%)and T_(90%)were 239 and 263℃ at a space velocity of 40,000 mL g^(-1)h^(-1);apparent activation energy and specific reaction rate at 260℃ were 54.7 kJ mol^(-1)and 4.3×10^(-7)mol g^(-1)_(cat)s^(-1),respectively),which was associated with its higher(Cr^(5+)+Cr^(6+))amount,large n-hexane adsorption capacity,and good lattice oxygen mobility that could enhance the deep oxidation of n-hexane,in which Ni_(1) was beneficial for the enhancements in surface lattice oxygen mobility and low-temperature reducibility,while Co_(1) preferred to generate higher contents of the high-valence states of chromium and surface oxygen species as well as adsorption and activation of n-hexane.n-Hexane combustion takes place via the Mars van Krevelen(MvK)mechanism,and its reaction pathways are as follows:n-hexane→olefins or 3-hexyl hydroperoxide→3-hexanone,2-hexanone or 2,5-dimethyltetrahydrofuran→2-methyloxirane or 2-ethyl-oxetane→acrylic acid→CO_x→CO_(2)and H_(2)O.展开更多
In this paper,the effect of the Si content on microstructure evolution,mechanical properties,and fracture behavior of the Al-xSi/AZ91D bimetallic composites prepared by compound casting was investigated systematically...In this paper,the effect of the Si content on microstructure evolution,mechanical properties,and fracture behavior of the Al-xSi/AZ91D bimetallic composites prepared by compound casting was investigated systematically.The obtained results showed that all the Al-xSi/AZ91D bimetallic composites had a metallurgical reaction layer(MRL),whose thickness increased with increasing Si content for the hypoeutectic Al-Si/AZ91D composites,while the hypereutectic Al-Si/AZ91D composites were opposite.The MRL included eutectic layer(E layer),intermetallic compound layer(IMC layer)and transition region layer(T layer).In the IMC layer,the hypereutectic Al-Si/AZ91D composites contained some Si solid solution and flocculent Mg_(2)Si+Al-Mg IMCs phases not presented in the hypoeutectic Al-Si/AZ91D composites.Besides,increasing Si content,the thickness proportion of the T layer increased,forming an inconsistent preferred orientation of the MRL.The shear strengths of the Al-xSi/AZ91D bimetallic composites enhanced with increasing Si content,and the Al-15Si/AZ91D composite obtained a maximum shear strength of 58.6 MPa,which was 73.4% higher than the Al-6Si/AZ91D composite.The fractures of the Al-xSi/AZ91D bimetallic composites transformed from the T layer into the E layer with the increase of the Si content.The improvement of the shear strength of the Al-xSi/AZ91D bimetallic composites was attributed to the synergistic action of the Mg_(2)Si particle reinforcement,the reduction of oxidizing inclusions and the ratio of Al-Mg IMCs as well as the orientation change of the MRL.展开更多
Lithium-sulfur(Li-S)batteries are considered highly promising as next-generation energy storage systems due to high theoretical capacity(2600 Wh kg^(-1))and energy density(1675 mA h g^(-1))as well as the abundant natu...Lithium-sulfur(Li-S)batteries are considered highly promising as next-generation energy storage systems due to high theoretical capacity(2600 Wh kg^(-1))and energy density(1675 mA h g^(-1))as well as the abundant natural reserves,low cost of elemental sulfur,and environmentally friendly properties.However,several challenges impede its commercialization including low conductivity of sulfur itself,the severe“shuttle effect”caused by lithium polysulfides(LiPSs)during charge–discharge processes,volume expansion effects and sluggish reaction kinetics.As a solution,polar metal particles and their compounds have been introduced as the main hosts for sulfur cathode due to their robust catalytic activity and adsorption capability,effectively suppressing the“shuttle effect”of Li PSs.Bimetallic alloys and their compounds with multi-functional properties exhibit remarkable electrochemical performance more readily when compared to single-metal materials.Well-designed bimetallic materials demonstrate larger specific surface areas and richer active sites,enabling simultaneous high adsorption capability and strong catalytic properties.The synergistic effect of the“adsorption-catalysis”sites accelerates the adsorptiondiffusion-conversion process of Li PSs,ultimately achieving a long-lasting Li-S battery.Herein,the latest progress and performance of bimetallic materials in cathodes,separators,and interlayers of Li-S batteries are systematically reviewed.Firstly,the principles and challenges of Li-S batteries are briefly analyzed.Then,various mechanisms for suppressing“shuttle effects”of Li PSs are emphasized at the microscale.Subsequently,the performance parameters of various bimetallic materials are comprehensively summarized,and some improvement strategies are proposed based on these findings.Finally,the future prospects of bimetallic materials are discussed,with the hope of providing profound insights for the rational design and manufacturing of high-performance bimetallic materials for LSBs.展开更多
Hydrogen energy has become one of the recognized clean energy sources worldwide due to its advantages such as low cost,renewable energy,and green environmental protec-tion.Electrolytic water is currently one of the mo...Hydrogen energy has become one of the recognized clean energy sources worldwide due to its advantages such as low cost,renewable energy,and green environmental protec-tion.Electrolytic water is currently one of the most promising solutions for providing hydrogen fuel.Nickel iron bimetallic electrocatalysts have abundant sources,low cost,clean and pollution-free properties,and strong catalytic performance,This article mainly reviews the development and research of bimetallic nickel iron oxides and nickel iron alloys in recent years,and explores their synthesis methods,properties,and stability in depth.展开更多
To solve low efficiency,environmental pollution,and toxicity for synthesizing zeolitic imidazolate frameworks(ZIFs)in organic solvents,a KOH-assisted aqueous strategy is proposed to synthesize bimetallic ZIFs polyhedr...To solve low efficiency,environmental pollution,and toxicity for synthesizing zeolitic imidazolate frameworks(ZIFs)in organic solvents,a KOH-assisted aqueous strategy is proposed to synthesize bimetallic ZIFs polyhedrons,which are used as precursors to prepare bimetallic selenide and N-doped carbon(NC)composites.Among them,Fe–Co–Se/NC retains the three-dimensional(3D)polyhedrons with mesoporous structure,and Fe–Co–Se nanoparticles are uniform in size and evenly distributed.When assessed as anode material for lithium-ion batteries,Fe–Co–Se/NC achieves an excellent initial specific capacity of 1165.9 m Ah·g^(-1)at 1.0 A·g^(-1),and the reversible capacity of Fe–Co–Se/NC anode is 1247.4 m Ah·g^(-1)after 550 cycles.It is attributed to that the uniform composite of bimetallic selenides and N-doped carbon can effectively tune redox active sites,the stable 3D structure of Fe–Co–Se/NCs guarantees the structural stability and wettability of the electrolyte,and the uniform distribution of Fe–Co–S nanoparticles in size esuppresses the volume expansion and accelerates the electrochemical reaction kinetics.展开更多
Polymer Ru-Co bimetallic complexes have been examined by X-ray photoelectron spectroscopy.The catalyst is highly active only when the mole ratio of Co/Ru is 4: 3. The activity of catalysts does not depend on the total...Polymer Ru-Co bimetallic complexes have been examined by X-ray photoelectron spectroscopy.The catalyst is highly active only when the mole ratio of Co/Ru is 4: 3. The activity of catalysts does not depend on the total Co/Ru ratio, but on the surface stoichiometry of Co and Ru. When the relative intensities of Co_2_p and Ru_(3d) of XPS peaks are close to each other and both are high,the catalyst exhibits its maximum activity The mechanism ofcatalytic hydroformylation has been discussed.展开更多
Ammonia borane is widely used in most areas including fuel cell applications.The present paper describes electrochemical behavior of ammonia borane in alkaline media on the poly(p-aminophenol) film modified with Au an...Ammonia borane is widely used in most areas including fuel cell applications.The present paper describes electrochemical behavior of ammonia borane in alkaline media on the poly(p-aminophenol) film modified with Au and Ag bimetallic nanoparticles.The glassy carbon electrode was firstly covered with polymeric film electrochemically and then,Au,Ag,and Au–Ag nanoparticles were deposited on the polymeric film,respectively.The surface morphology and chemical composition of these electrodes were examined by scanning electron microscopy,transmission electron microscopy,electrochemical impedance spectroscopy,X-ray diffraction,and X-ray photoelectron spectroscopy.It was found that alloyed Au–Ag bimetallic nanoparticles are formed.Electrochemical measurements indicate that the developed electrode modified by Au–Ag bimetallic nanoparticles exhibit the highest electrocatalytic activity for ammonia borane oxidation in alkaline media.The rotating disk electrode voltammetry demonstrates that the developed electrode can catalyze almost six-electron oxidation pathway of ammonia borane.Our results may be attractive for anode materials of ammonia borane fuel cells under alkaline conditions.展开更多
The catalytic performance of bimetallic Ru-Co catalysts prepared from a series of H3Ru3Co(CO)12. RuCo2(CO)11 and HRuCo3(CO)12 in CO hydrogenation was investigated, and it was found that the Ru-Co bimetallic carbonyl c...The catalytic performance of bimetallic Ru-Co catalysts prepared from a series of H3Ru3Co(CO)12. RuCo2(CO)11 and HRuCo3(CO)12 in CO hydrogenation was investigated, and it was found that the Ru-Co bimetallic carbonyl cluster-derived catalysts showed a high activity for products, particularly higher oxygenates, compared with the catalysts prepared from impregnation or co-impregnation of monometallic clusters such as [HRu3(CO)11] and Co4(CO)12. The selectivity for oxygenates in CO hydrogenation highly increased with the molar ratio of Co/Ru in the Ru-Co bimetallic cluster to CO/H2 in feed gas. Raising reaction temperature led to an intensive increase of CO conversion and a considerable decrease of selectivity for oxygenates. In situ FT-IR studies revealed that the band at 1584 cm-1 on Ru-Co bimetallic cluster-derived catalysts at 453 K under syngas (CO/H2 = 0. 5) has a good linear relationship to rates of oxygenate formation, which is likely associated with an intermediate to produce oxygenates in CO hydrogenation.展开更多
A systematic study was carried out to investigate the promotion effect of manganese on the performance of a coprecipitated iron-manganese bimetallic catalyst for the light olefins synthesis from syngas. The catalyst s...A systematic study was carried out to investigate the promotion effect of manganese on the performance of a coprecipitated iron-manganese bimetallic catalyst for the light olefins synthesis from syngas. The catalyst samples were characterized by N2 physisorption, transmis- sion electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD), Mossbauer spectroscopy, H2- differential thermogravimetric analysis (H2-DTG), CO temperature-programmed reduction (CO-TPR) and CO2 temperature-programmed des- orption (CO2-TPD). The Fischer-Tropsch synthesis (FTS) performance of the catalyst was measured at 1.5 MPa, 250 ℃ and syngas with H2/CO ratio of 2.0. The characterization results indicated that the addition of manganese decreases the catalyst crystallite size, and improves the catalyst BET surface area and pore volume. The presence of manganese suppresses the catalyst reduction and carburization in H2, CO and syngas, respectively. The addition of manganese improves the catalytic activity of water-gas shift reaction and suppresses the oxidation of iron carbides in the FTS reaction. The incorporation of manganese improves the catalyst surface basicity and results in a significant improvement in the selectivities to light olefins and heavy hydrocarbons (C5+), and furthermore an inhibition of methane formation in FTS. The pure iron catalyst (Mn-00) has the highest initial FTS catalytic activity (65%) and the lowest selectivity (17.35 wt%) to light olefins (C2=-C4=). The addition of an appropriate amount of manganese can improve the catalyst FTS activity.展开更多
The utility of nickel/iron in the remediation of atrazine-contaminated water was investigated. The experimental results showed that nickel/iron had effective catalytic activity in dechlorinating atrazine under acidic ...The utility of nickel/iron in the remediation of atrazine-contaminated water was investigated. The experimental results showed that nickel/iron had effective catalytic activity in dechlorinating atrazine under acidic conditions. The dechlorination reaction approximately followed the first-order kinetics under the experimental conditions(nickel/iron:1.0 g/250 ml;C atrazine=20.0 mg/L), the reaction rate increased with decreasing pH value of the reaction solution and increasing the proportion of Ni:Fe within 2.95%. For condition with 2.95% nickel/iron, the reaction rate constants were 0.07518(R=0.9927), 0.06212(R=0.9846) and 0.00131 min -1(R=0.9565) at pH=2.0, 3.0 and 4.0, respectively. HPLC analysis was used to monitor the decline of atrazine concentration.展开更多
The bimetallic NiCu/SAPO-11 catalysts were prepared by co-impregnation, sequential impregnation, coprecipitation, and mechanical mixing methods. Powder X-ray diffraction, nitrogen adsorption-desorption,temperature-pro...The bimetallic NiCu/SAPO-11 catalysts were prepared by co-impregnation, sequential impregnation, coprecipitation, and mechanical mixing methods. Powder X-ray diffraction, nitrogen adsorption-desorption,temperature-programmed desorption of ammonia, transmission electron microscopy, temperatureprogrammed reduction of hydrogen, and X-ray photoelectron spectroscopy were used to characterize the physicochemical properties of the catalysts. The catalytic performance of the catalysts was assessed by the hydroisomerization of n-octane. Results indicated that the conversion of n-octane and selectivity to n-octane isomers were related to the preparation methods of the catalysts. The catalysts with Ni-Cu alloy effectively restrained the hydrogenolysis reaction that decreases the selectivity of isomerization. The catalyst prepared by the mechanical mixing of NiO and CuO hardly formed Ni-Cu alloy, showing obvious hydrogenolysis and low selectivity to n-octane isomers. The unbalance between the metal and acid sites resulted in the low conversion of n-octane and selectivity to n-octane isomers. Among all the catalysts,the catalyst prepared by the co-impregnation method exhibited high catalytic activity and selectivity to n-octane isomers.展开更多
基金supported by CREST project(Catalyst Design of Gold Clusters through Junction Effect with Metal oxides,Carbons,and Polymers)sponsored by Japan Science and Technology Agency(JST)~~
文摘There are two theories regarding the origin of the remarkable synergistic effect observed in Au‐Ag bimetallic catalysts when applied to various oxidative reactions. One is based on the importance of the contact interfaces between AgOx regions and the surface of the bulk Au as active working sites, while the other holds that charge transfer from Ag to Au in a surface Au‐Ag alloy causes the catalytic activity. One key point in examining these theories and determining the origin of the synergy in‐volves determining whether or not Ag exists as an oxide or as a metallic alloy on the Au surface. To confirm that enhanced activity results from contact between Ag2O and Au nanoparticles (NPs), a comparative study of catalytic CO oxidation over Au/Ag2O and Ag2O was performed in the present work, using a closed recirculation reaction system. A reaction mixture consisting of a stoichiometric composition of CO and O2 (CO/O2=2/1) was supplied to both catalysts and the resulting pressure decrease rates were tracked, from which the amounts of gas consumed as well as the quantity of CO2 produced were determined. The steady state reactions of both Au/Ag2O and Ag2O did not lead to any meaningful difference in the rate of pressure decrease during the oxidation. The pressure decrease over both catalysts was attributed to the reduction of surface lattice O on Ag2O by CO. The results obtained for Au/Ag2O are in good agreement with previous data resulting from the use of Ag‐contaminated Au powder (Ag/Au‐b) having an oxidized surfaces. This finding suggests that the perimeters between AgOx zones and the bulk Au surface may not function as active sites during CO oxidation. A review of previous results obtained with Ag/Au‐b specimens having so‐called steady state surfaces indicates that AgOx species in such materials are reduced to the 0 state to form a Ag‐Au alloy that provides the active sites.
基金financially supported by the National Natural Science Foundation of China(52072409)the Major Scientific and Technological Innovation Project of Shandong Province(2020CXGC010403)+1 种基金the Taishan Scholar Project(No.ts201712020)the Natural Science Foundation of Shandong Province(ZR2021QE062)
文摘CO_(2)electrochemical reduction reaction(CO_(2)RR)to formate is a hopeful pathway for reducing CO_(2)and producing high-value chemicals,which needs highly selective catalysts with ultra-broad potential windows to meet the industrial demands.Herein,the nanorod-like bimetallic ln_(2)O_(3)/Bi_(2)O_(3)catalysts were successfully synthesized by pyrolysis of bimetallic InBi-MOF precursors.The abundant oxygen vacancies generated from the lattice mismatch of Bi_(2)O_(3)and ln_(2)O_(3)reduced the activation energy of CO_(2)to*CO_(2)·^(-)and improved the selectivity of*CO_(2)·^(-)to formate simultaneously.Meanwhile,the carbon skeleton derived from the pyrolysis of organic framework of InBi-MOF provided a conductive network to accelerate the electrons transmission.The catalyst exhibited an ultra-broad applied potential window of 1200 mV(from-0.4 to-1.6 V vs RHE),relativistic high Faradaic efficiency of formate(99.92%)and satisfactory stability after 30 h.The in situ FT-IR experiment and DFT calculation verified that the abundant oxygen vacancies on the surface of catalysts can easily absorb CO_(2)molecules,and oxygen vacancy path is dominant pathway.This work provides a convenient method to construct high-performance bimetallic catalysts for the industrial application of CO_(2)RR.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.21978119,22202088)Key Research and Development Plan of Hainan Province(ZDYF2022SHFZ285)Jiangsu Funding Program for Excellent Postdoctoral Talent(2022ZB636)。
文摘Synergic catalytic effect between active sites and supports greatly determines the catalytic activity for the aerobic oxidative desulfurization of fuel oils.In this work,Ni-doped Co-based bimetallic metal-organic framework(CoNi-MOF)is fabricated to disperse N-hydroxyphthalimide(NHPI),in which the whole catalyst provides plentiful synergic catalytic effect to improve the performance of oxidative desulfurization(ODS).As a bimetallic MOF,the second metal Ni doping results in the flower-like morphology and the modification of electronic properties,which ensure the exposure of NHPI and strengthen the synergistic effect of the overall catalyst.Compared with the monometallic Co-MOF and naked NHPI,the NHPI@CoNi-MOF triggers the efficient activation of molecular oxygen and improves the ODS performance without an initiator.The sulfur removal of dibenzothiophene-based model oil reaches 96.4%over the NHPI@CoNi-MOF catalyst in 8 h of reaction.Furthermore,the catalytic product of this aerobic ODS reaction is sulfone,which is adsorbed on the catalyst surface due to the difference in polarity.This work provides new insight and strategy for the design of a strong synergic catalytic effect between NHPI and bimetallic supports toward high-activity aerobic ODS materials.
基金supported by the Inner Mongolia R&D Program Plan(2021ZD0042,2021EEDSCXSFQZD006)the National Natural Science Foundation of China(21902123)the Natural Science Basic Research Program of Shaanxi(2023-JC-ZD-22)。
文摘Designing efficient and long-lasting non-metal electrocatalysts is an urgent task for addressing the issue of kinetic hysteresis in electrochemical oxidation reactions.The bimetallic hydroxides,catalyzing the oxygen evolution reaction(OER),have significant research potential because hydroxide reconstruction to generate an active phase is a remarkable advantage.Herein,the complete reconstruction of ultrathin CoNi(OH)_(2) nanosheets was achieved by embedding Ag nanoparticles into the hydroxide to induce a spontaneous redox reaction(SRR),forming heterojunction Ag@CoNi(OH)_(2) for bifunctional hydrolysis.Theoretical calculations and in situ Raman and ex situ characterizations revealed that the inductive effect of the Ag cation redistributed the charge to promote phase transformation to highly activate Ag-modified hydroxides.The Co-Ni dual sites in Co/NiOOH serve as novel active sites for optimizing the intermediates,thereby weakening the barrier formed by OOH^*.Ag@CoNi(OH)_(2) required a potential of 1.55 V to drive water splitting at a current density of 10 mA cm^(-2),with nearly 98.6% Faraday efficiency.Through ion induction and triggering of electron regulation in the OER via the synergistic action of the heterogeneous interface and surface reconstruction,this strategic design can overcome the limited capacity of bimetallic hydroxides and bridge the gap between the basic theory and industrialization of water decomposition.
基金the funding support from the National Key Research and Development Program of China(2019YFE0123400)the Tianjin Distinguished Young Scholars Fund(20JCJQJC00260)+4 种基金the Major Science and Technology Project of Anhui Province(202203f07020007)the Anhui Conch Group Co.,Ltdthe“111”Project(B16027)the funding support from the Natural Science Foundation of China(22209081)the fellowship of China Postdoctoral Science Foundation(2021M690082)。
文摘Developing bimetallic catalysts is an effective strategy for enhancing the activity and selectivity of electrochemical CO_(2) reduction reactions,where understanding the structure-activity relationship is essential for catalyst design.Herein,we prepared two Cu-Ag bimetallic catalysts with Ag nanoparticles attached to the top or the bottom of Cu nanowires.When tested in a flow cell,the Cu-Ag catalyst with Ag nanoparticles on the bottom achieved a faradaic efficiency of 54%for ethylene production,much higher than the catalyst with Ag nanoparticles on the top.The catalysts were further studied in the H-cell and zero-gap MEA cell.It was found that placing the two metals in the intensified reaction zone is crucial to triggering the tandem reaction of bimetallic catalysts.Our work elucidates the structure-activity relationship of bimetallic catalysts for CO_(2) reduction and demonstrates the importance of considering both catalyst structures and cell characteristics to achieve high activity and selectivity.
基金financially supported by the National Natural Science Foundation of China with grant number of 22172082 and 21978137。
文摘The development of earth-abundant electrocatalysts with high performance for electrochemical CO_(2)reduction(ECR)is of great significance.Cu-based catalysts have been widely investigated for ECR due to their unique ability to generate various carbonaceous products,but directing selectivity toward one certain product and identifying the real active sites during ECR are still full of challenge.Here,after the incorporation of CdO into CuO,the Cu_(0.5)Cd_(0.5)-O catalyst achieves a 10.3-fold enhancement for CO selectivity in comparison with CuO,and a CO faradic efficiency nearly 90%with a current density around20 mA cm^(-2)could maintain at least 60 h.Interestingly,a wide CO/H_(2)ratio(0.07-10)is reached on Cu_(x)Cd_(1-x)-O catalysts by varying the Cu/Cd ratio,demonstrating the potential of syngas production using such catalysts.The results of ex situ XRD,XPS,and in situ Raman reveal that the real active sites of Cu_(0.5)Cd_(0.5)-O catalysts for CO production during ECR reaction are the reconstructed mixed phases of CuCd alloy and CdCO_(3).In situ FTIR and theoretical calculations further implicate the presence of Cd related species promotes the CO desorption and inhibits the H_(2)evolution,thus leading to an enhanced CO generation.
基金supported by the National Key Research and Development Program(2021YFB3801303)the National Natural Science Foundation of China(22408161,21921006)+1 种基金the Key Research and Development Program of Jiangsu Provincial Department of Science and Technology(BE2022033-3)the State Key Laboratory of Materials-Oriented Chemical Engineering(SKL-MCE-22A03).
文摘Two-dimensional(2D)catalytic ozonation membranes are promising for the treatment of micropollutants in wastewater due to simultaneous ozone-catalyzed degradation and membrane filtration processes.However,it remains challenging for 2D catalytic ozonation membranes to efficiently degrade micropollutants due to low mass-transfer efficiency and poor catalytic activity.Herein,Fe/Mn bimetallic metal-organic framework(MOF)intercalated lamellar MnO_(2) membranes with fast and robust ozone-catalyzed mass-transfer channels were developed on the surface of the hollow fiber ceramic membrane(HFCM)to obtain 2D Fe/Mn-MOF@MnO_(2)-HFCM for efficiently degrading micropollutants in wastewater.The intercalation of Fe/Mn-MOF expanded the interlayer spacing of the MnO_(2) membrane,thereby providing abundant transport channels for rapid passage of water.More notably,the Fe/Mn-MOF provided enriched reactive sites as well as high electron transfer efficiency based on the redox cycling between Mn^(3+)/Mn^(4+) and Fe^(2+)/Fe^(3+),ensuring the effective catalytic oxidative degradation of micropollutants including tetracycline hydrochloride(TCH),methylene blue,and methyl blue.Moreover,the carboxyl groups on the MOF formed covalent bonds(-COO-)with the hydroxyl groups in MnO_(2) between layers,which increased the interaction between MnO_(2) nanosheets to form stable interlayer channels.Specifically,the optimal composite membrane achieved a high removal rate of TCH micropollutant(93.4%),high water treatment capacity(282 L·m^(-2)·h^(-1)·MPa^(-1)),and excellent longterm stability(1200 min).This study provides a simple and easily scalable strategy to construct fast,efficient,and stable 2D catalytic mass-transfer channels for the efficient treatment of micropollutants in wastewater.
基金supported by the National Natural Science Foundation of China(No.21501015)the Hunan Provincial Natural Science Foundation,China(No.2022JJ30604)Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation,China(No.2022CL01)。
文摘A composite solid electrolyte comprising a Cu-Al bimetallic metal-organic framework(CAB),lithium salt(LiTFSI)and polyethylene oxide(PEO)was fabricated through molecular grafting to enhance the ionic conductivity of the PEO-based electrolytes.Experimental and molecular dynamics simulation results indicated that the electrolyte with 10 wt.%CAB(PL-CAB-10%)exhibits high ionic conductivity(8.42×10~(-4)S/cm at 60℃),high Li+transference number(0.46),wide electrochemical window(4.91 V),good thermal stability,and outstanding mechanical properties.Furthermore,PL-CAB-10%exhibits excellent cycle stability in both Li-Li symmetric battery and Li/PL-CAB-10%/LiFePO4 asymmetric battery setups.These enhanced performances are primarily attributable to the introduction of the versatile CAB.The abundant metal sites in CAB can react with TFSI~-and PEO through Lewis acid-base interactions,promoting LiTFSI dissociation and improving ionic conductivity.Additionally,regular pores in CAB provide uniformly distributed sites for cation plating during cycling.
基金supported by the National Natural Science Committee of China-Liaoning Provincial People's Government Joint Fund(U1908204)National Natural Science Foundation of China(21876006,21976009,and 21961160743)+2 种基金Foundation on the Creative Research Team Construction Promotion Project of Beijing Municipal Institutions(IDHT20190503)Natural Science Foundation of Beijing Municipal Commission of Education(KM201710005004)Development Program for the Youth Outstanding-Notch Talent of Beijing Municipal Commission of Education(CIT&TCD201904019)。
文摘Developing the alternative supported noble metal catalysts with low cost,high catalytic efficiency,and good resistance toward carbon dioxide and water vapor is critically demanded for the oxidative removal of volatile organic compounds(VOCs).In this work,we prepared the mesoporous chromia-supported bimetallic Co and Ni single-atom(Co_(1)Ni_(1)/meso-Cr_(2)O_(3))and bimetallic Co and Ni nanoparticle(Co_(NP)Ni_(NP)/mesoCr_(2)O_(3))catalysts adopting the one-pot polyvinyl pyrrolidone(PVP)-and polyvinyl alcohol(PVA)-protecting approaches,respectively.The results indicate that the Co_(1)Ni_(1)/meso-Cr_(2)O_(3)catalyst exhibited the best catalytic activity for n-hexane(C_(6)H_(14))combustion(T_(50%)and T_(90%)were 239 and 263℃ at a space velocity of 40,000 mL g^(-1)h^(-1);apparent activation energy and specific reaction rate at 260℃ were 54.7 kJ mol^(-1)and 4.3×10^(-7)mol g^(-1)_(cat)s^(-1),respectively),which was associated with its higher(Cr^(5+)+Cr^(6+))amount,large n-hexane adsorption capacity,and good lattice oxygen mobility that could enhance the deep oxidation of n-hexane,in which Ni_(1) was beneficial for the enhancements in surface lattice oxygen mobility and low-temperature reducibility,while Co_(1) preferred to generate higher contents of the high-valence states of chromium and surface oxygen species as well as adsorption and activation of n-hexane.n-Hexane combustion takes place via the Mars van Krevelen(MvK)mechanism,and its reaction pathways are as follows:n-hexane→olefins or 3-hexyl hydroperoxide→3-hexanone,2-hexanone or 2,5-dimethyltetrahydrofuran→2-methyloxirane or 2-ethyl-oxetane→acrylic acid→CO_x→CO_(2)and H_(2)O.
基金the supports provided by the National Natural Science Foundation of China(Nos.52075198 and 52271102)the China Postdoctoral Science Foundation(No.2021M691112)+1 种基金the State Key Lab of Advanced Metals and Materials(No.2021-ZD07)the Analytical and Testing Center,HUST。
文摘In this paper,the effect of the Si content on microstructure evolution,mechanical properties,and fracture behavior of the Al-xSi/AZ91D bimetallic composites prepared by compound casting was investigated systematically.The obtained results showed that all the Al-xSi/AZ91D bimetallic composites had a metallurgical reaction layer(MRL),whose thickness increased with increasing Si content for the hypoeutectic Al-Si/AZ91D composites,while the hypereutectic Al-Si/AZ91D composites were opposite.The MRL included eutectic layer(E layer),intermetallic compound layer(IMC layer)and transition region layer(T layer).In the IMC layer,the hypereutectic Al-Si/AZ91D composites contained some Si solid solution and flocculent Mg_(2)Si+Al-Mg IMCs phases not presented in the hypoeutectic Al-Si/AZ91D composites.Besides,increasing Si content,the thickness proportion of the T layer increased,forming an inconsistent preferred orientation of the MRL.The shear strengths of the Al-xSi/AZ91D bimetallic composites enhanced with increasing Si content,and the Al-15Si/AZ91D composite obtained a maximum shear strength of 58.6 MPa,which was 73.4% higher than the Al-6Si/AZ91D composite.The fractures of the Al-xSi/AZ91D bimetallic composites transformed from the T layer into the E layer with the increase of the Si content.The improvement of the shear strength of the Al-xSi/AZ91D bimetallic composites was attributed to the synergistic action of the Mg_(2)Si particle reinforcement,the reduction of oxidizing inclusions and the ratio of Al-Mg IMCs as well as the orientation change of the MRL.
基金supported by the National Natural Science Foundation of China (52203066,51973157,61904123)the Tianjin Natural Science Foundation (18JCQNJC02900)+3 种基金National innovation and entrepreneurship training program for college students (202310058007)Tianjin Municipal college students’innovation and entrepreneurship training program (202310058088)the Science&Technology Development Fund of Tianjin Education Commission for Higher Education (Grant No.2018KJ196)State Key Laboratory of Membrane and Membrane Separation,Tiangong University。
文摘Lithium-sulfur(Li-S)batteries are considered highly promising as next-generation energy storage systems due to high theoretical capacity(2600 Wh kg^(-1))and energy density(1675 mA h g^(-1))as well as the abundant natural reserves,low cost of elemental sulfur,and environmentally friendly properties.However,several challenges impede its commercialization including low conductivity of sulfur itself,the severe“shuttle effect”caused by lithium polysulfides(LiPSs)during charge–discharge processes,volume expansion effects and sluggish reaction kinetics.As a solution,polar metal particles and their compounds have been introduced as the main hosts for sulfur cathode due to their robust catalytic activity and adsorption capability,effectively suppressing the“shuttle effect”of Li PSs.Bimetallic alloys and their compounds with multi-functional properties exhibit remarkable electrochemical performance more readily when compared to single-metal materials.Well-designed bimetallic materials demonstrate larger specific surface areas and richer active sites,enabling simultaneous high adsorption capability and strong catalytic properties.The synergistic effect of the“adsorption-catalysis”sites accelerates the adsorptiondiffusion-conversion process of Li PSs,ultimately achieving a long-lasting Li-S battery.Herein,the latest progress and performance of bimetallic materials in cathodes,separators,and interlayers of Li-S batteries are systematically reviewed.Firstly,the principles and challenges of Li-S batteries are briefly analyzed.Then,various mechanisms for suppressing“shuttle effects”of Li PSs are emphasized at the microscale.Subsequently,the performance parameters of various bimetallic materials are comprehensively summarized,and some improvement strategies are proposed based on these findings.Finally,the future prospects of bimetallic materials are discussed,with the hope of providing profound insights for the rational design and manufacturing of high-performance bimetallic materials for LSBs.
文摘Hydrogen energy has become one of the recognized clean energy sources worldwide due to its advantages such as low cost,renewable energy,and green environmental protec-tion.Electrolytic water is currently one of the most promising solutions for providing hydrogen fuel.Nickel iron bimetallic electrocatalysts have abundant sources,low cost,clean and pollution-free properties,and strong catalytic performance,This article mainly reviews the development and research of bimetallic nickel iron oxides and nickel iron alloys in recent years,and explores their synthesis methods,properties,and stability in depth.
基金financially supported by the National Natural Science Foundation of China(No.52102100)the Natural Science Foundation of Jiangsu Province(No.BK20181469)the Guangdong Basic and Applied Basic Research Foundation,China(No.2020A1515110035)。
文摘To solve low efficiency,environmental pollution,and toxicity for synthesizing zeolitic imidazolate frameworks(ZIFs)in organic solvents,a KOH-assisted aqueous strategy is proposed to synthesize bimetallic ZIFs polyhedrons,which are used as precursors to prepare bimetallic selenide and N-doped carbon(NC)composites.Among them,Fe–Co–Se/NC retains the three-dimensional(3D)polyhedrons with mesoporous structure,and Fe–Co–Se nanoparticles are uniform in size and evenly distributed.When assessed as anode material for lithium-ion batteries,Fe–Co–Se/NC achieves an excellent initial specific capacity of 1165.9 m Ah·g^(-1)at 1.0 A·g^(-1),and the reversible capacity of Fe–Co–Se/NC anode is 1247.4 m Ah·g^(-1)after 550 cycles.It is attributed to that the uniform composite of bimetallic selenides and N-doped carbon can effectively tune redox active sites,the stable 3D structure of Fe–Co–Se/NCs guarantees the structural stability and wettability of the electrolyte,and the uniform distribution of Fe–Co–S nanoparticles in size esuppresses the volume expansion and accelerates the electrochemical reaction kinetics.
文摘Polymer Ru-Co bimetallic complexes have been examined by X-ray photoelectron spectroscopy.The catalyst is highly active only when the mole ratio of Co/Ru is 4: 3. The activity of catalysts does not depend on the total Co/Ru ratio, but on the surface stoichiometry of Co and Ru. When the relative intensities of Co_2_p and Ru_(3d) of XPS peaks are close to each other and both are high,the catalyst exhibits its maximum activity The mechanism ofcatalytic hydroformylation has been discussed.
基金supported by the Scientific and Technical Research Council of Turkey(TUBITAK) with 110T806 project numberEBILTEM with BIL-012 project numberEge University Research Funds(BAP project,10 FEN/075)
文摘Ammonia borane is widely used in most areas including fuel cell applications.The present paper describes electrochemical behavior of ammonia borane in alkaline media on the poly(p-aminophenol) film modified with Au and Ag bimetallic nanoparticles.The glassy carbon electrode was firstly covered with polymeric film electrochemically and then,Au,Ag,and Au–Ag nanoparticles were deposited on the polymeric film,respectively.The surface morphology and chemical composition of these electrodes were examined by scanning electron microscopy,transmission electron microscopy,electrochemical impedance spectroscopy,X-ray diffraction,and X-ray photoelectron spectroscopy.It was found that alloyed Au–Ag bimetallic nanoparticles are formed.Electrochemical measurements indicate that the developed electrode modified by Au–Ag bimetallic nanoparticles exhibit the highest electrocatalytic activity for ammonia borane oxidation in alkaline media.The rotating disk electrode voltammetry demonstrates that the developed electrode can catalyze almost six-electron oxidation pathway of ammonia borane.Our results may be attractive for anode materials of ammonia borane fuel cells under alkaline conditions.
文摘The catalytic performance of bimetallic Ru-Co catalysts prepared from a series of H3Ru3Co(CO)12. RuCo2(CO)11 and HRuCo3(CO)12 in CO hydrogenation was investigated, and it was found that the Ru-Co bimetallic carbonyl cluster-derived catalysts showed a high activity for products, particularly higher oxygenates, compared with the catalysts prepared from impregnation or co-impregnation of monometallic clusters such as [HRu3(CO)11] and Co4(CO)12. The selectivity for oxygenates in CO hydrogenation highly increased with the molar ratio of Co/Ru in the Ru-Co bimetallic cluster to CO/H2 in feed gas. Raising reaction temperature led to an intensive increase of CO conversion and a considerable decrease of selectivity for oxygenates. In situ FT-IR studies revealed that the band at 1584 cm-1 on Ru-Co bimetallic cluster-derived catalysts at 453 K under syngas (CO/H2 = 0. 5) has a good linear relationship to rates of oxygenate formation, which is likely associated with an intermediate to produce oxygenates in CO hydrogenation.
基金supported by Natural Science Foundation of Chongqing Three Gorges University (12ZD14)Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University
文摘A systematic study was carried out to investigate the promotion effect of manganese on the performance of a coprecipitated iron-manganese bimetallic catalyst for the light olefins synthesis from syngas. The catalyst samples were characterized by N2 physisorption, transmis- sion electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD), Mossbauer spectroscopy, H2- differential thermogravimetric analysis (H2-DTG), CO temperature-programmed reduction (CO-TPR) and CO2 temperature-programmed des- orption (CO2-TPD). The Fischer-Tropsch synthesis (FTS) performance of the catalyst was measured at 1.5 MPa, 250 ℃ and syngas with H2/CO ratio of 2.0. The characterization results indicated that the addition of manganese decreases the catalyst crystallite size, and improves the catalyst BET surface area and pore volume. The presence of manganese suppresses the catalyst reduction and carburization in H2, CO and syngas, respectively. The addition of manganese improves the catalytic activity of water-gas shift reaction and suppresses the oxidation of iron carbides in the FTS reaction. The incorporation of manganese improves the catalyst surface basicity and results in a significant improvement in the selectivities to light olefins and heavy hydrocarbons (C5+), and furthermore an inhibition of methane formation in FTS. The pure iron catalyst (Mn-00) has the highest initial FTS catalytic activity (65%) and the lowest selectivity (17.35 wt%) to light olefins (C2=-C4=). The addition of an appropriate amount of manganese can improve the catalyst FTS activity.
基金the China High-Tech Development 863 Program,Guangdong Province Sci & Tech Bureau(No.2006B12401006)Guangzhou Sci & Tech Bureau(No.2005U13D2031,2007Z2-D2031)financial support of this work National University of Singapore for financial support.
文摘Novel Cu-Ni/C has been prepared and utilized as an efficient catalyst system in direct synthesis of DMC from CH3OH and CO2.
文摘The utility of nickel/iron in the remediation of atrazine-contaminated water was investigated. The experimental results showed that nickel/iron had effective catalytic activity in dechlorinating atrazine under acidic conditions. The dechlorination reaction approximately followed the first-order kinetics under the experimental conditions(nickel/iron:1.0 g/250 ml;C atrazine=20.0 mg/L), the reaction rate increased with decreasing pH value of the reaction solution and increasing the proportion of Ni:Fe within 2.95%. For condition with 2.95% nickel/iron, the reaction rate constants were 0.07518(R=0.9927), 0.06212(R=0.9846) and 0.00131 min -1(R=0.9565) at pH=2.0, 3.0 and 4.0, respectively. HPLC analysis was used to monitor the decline of atrazine concentration.
基金supported by the National Natural Science Foundation of China (No. 21676300)
文摘The bimetallic NiCu/SAPO-11 catalysts were prepared by co-impregnation, sequential impregnation, coprecipitation, and mechanical mixing methods. Powder X-ray diffraction, nitrogen adsorption-desorption,temperature-programmed desorption of ammonia, transmission electron microscopy, temperatureprogrammed reduction of hydrogen, and X-ray photoelectron spectroscopy were used to characterize the physicochemical properties of the catalysts. The catalytic performance of the catalysts was assessed by the hydroisomerization of n-octane. Results indicated that the conversion of n-octane and selectivity to n-octane isomers were related to the preparation methods of the catalysts. The catalysts with Ni-Cu alloy effectively restrained the hydrogenolysis reaction that decreases the selectivity of isomerization. The catalyst prepared by the mechanical mixing of NiO and CuO hardly formed Ni-Cu alloy, showing obvious hydrogenolysis and low selectivity to n-octane isomers. The unbalance between the metal and acid sites resulted in the low conversion of n-octane and selectivity to n-octane isomers. Among all the catalysts,the catalyst prepared by the co-impregnation method exhibited high catalytic activity and selectivity to n-octane isomers.