期刊文献+
共找到2,138篇文章
< 1 2 107 >
每页显示 20 50 100
Effects of Cu addition on growth of Au-Sn intermetallic compounds at Sn-xCu/Au interface during aging process
1
作者 TIAN Yanhong,WANG Chunqing,and LIU Wei Microjoining Laboratory,State Key Laboratory of Advanced Welding Production Technology,Harbin Institute of Technology,Harbin 15000,China 《Rare Metals》 SCIE EI CAS CSCD 2007年第S1期331-337,共7页
The growth of Au-Sn intermetallic compounds(IMCs) is a major concern to the reliability of solder joints in microelectronic,optoelectronic and micro-electronic-mechanical system(MEMS) which has a layer of Au metalliza... The growth of Au-Sn intermetallic compounds(IMCs) is a major concern to the reliability of solder joints in microelectronic,optoelectronic and micro-electronic-mechanical system(MEMS) which has a layer of Au metallization on the surface of components or leads.This paper presented the growth behavior of Au-Sn IMCs at interfaces of Au metallization and Sn-based solder joints with the addition of Cu alloying element during aging process,and growth coefficients of the Au-Sn IMCs were calculated.Results on the interfacial reaction between Sn-xCu solders and Au metallization during aging process show that three layers of Au-Sn IMCs including AuSn,AuSn2 and AuSn4 formed at the interface region.The thickness of each Au-Sn IMC layer vs square root of aging time follows linear relationship.Calculation of the IMC growth coefficients shows that the diffusion coefficients decrease with the addition Cu elements,which indicates that Cu addition suppresses the growth of Au-Sn IMCs layer. 展开更多
关键词 Sn-based solder alloys Cu alloying element au-sn intermetallic compounds
下载PDF
Porous TiFe_(2) intermetallic compound fabricated via elemental powder reactive synthesis
2
作者 Qian Zhao Zhenli He +3 位作者 Yuehui He Yue Qiu Zhonghe Wang Yao Jiang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期764-772,共9页
Porous intermetallics show potential in the field of filtration and separation as well as in the field of catalysis.Herein,porous Ti Fe2intermetallics were fabricated by the reactive synthesis of elemental powders.The... Porous intermetallics show potential in the field of filtration and separation as well as in the field of catalysis.Herein,porous Ti Fe2intermetallics were fabricated by the reactive synthesis of elemental powders.The phase transformation and pore formation of porous TiFe2intermetallics were investigated,and its corrosion behavior and hydrogen evolution reaction(HER)performance in alkali solution were studied.Porous TiFe2intermetallics with porosity in the range of 34.4%-56.4%were synthesized by the diffusion reaction of Ti and Fe elements,and the pore formation of porous TiFe2intermetallic compound is the result of a combination of the bridging effect and the Kirkendall effect.The porous TiFe2samples exhibit better corrosion resistance compared with porous 316L stainless steel,which is related to the formation of uniform nanosheets on the surface that hinder further corrosion,and porous TiFe2electrode shows the overpotential of 220.6 and 295.6 mV at 10 and 100 mA·cm-2,suggesting a good catalytic performance.The synthesized porous Fe-based intermetallic has a controllable pore structure as well as excellent corrosion resistance,showing its potential in the field of filtration and separation. 展开更多
关键词 TiFe2 intermetallic compound porous materials reactive synthesis corrosion behavior hydrogen evolution reaction
下载PDF
Corrosion resistance of Mg-Al-LDH steam coating on AZ80 Mg alloy:Effects of citric acid pretreatment and intermetallic compounds 被引量:1
3
作者 Jin-Meng Wang Xiang Sun +6 位作者 Liang Song M.Bobby Kannan Fen Zhang Lan-Yue Cui Yu-Hong Zou Shuo-Qi Li Rong-Chang Zeng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第8期2967-2979,共13页
In this study,the effects of intermetallic compounds(Mg_(17)Al_(12)and Al_(8)Mn_(5))on the Mg-Al layered double hydroxide(LDH)formation mechanism and corrosion behavior of an in-situ LDH/Mg(OH)_(2)steam coatings on AZ... In this study,the effects of intermetallic compounds(Mg_(17)Al_(12)and Al_(8)Mn_(5))on the Mg-Al layered double hydroxide(LDH)formation mechanism and corrosion behavior of an in-situ LDH/Mg(OH)_(2)steam coatings on AZ80 Mg alloy were investigated.Citric acid(CA)was used to activate the alloy surface during the pretreatment process.The alloy was first pretreated with CA and then subjected to a hydrothermal process using ultrapure water to produce Mg-Al-LDH/Mg(OH)_(2)steam coating.The effect of different time of acid pretreatment on the activation of the intermetallic compounds was investigated.The microstructure and elemental composition of the obtained coatings were analyzed using FE-SEM,EDS,XRD and FT-IR.The corrosion resistance of the coated samples was evaluated using different techniques,i.e.,potentiodynamic polarization(PDP),electrochemical impedance spectrum(EIS)and hydrogen evolution test.The results indicated that the CA pretreatment significantly influenced the activity of the alloy surface by exposing the intermetallic compounds.The surface area fraction of Mg_(17)Al_(12)and Al_(8)Mn_(5)phases on the surface of the alloy was significantly higher after the CA pretreatment,and thus promoted the growth of the subsequent Mg-Al-LDH coatings.The CA pretreatment for 30 s resulted in a denser and thicker LDH coating.Increase in the CA pretreatment time significantly led to the improvement in corrosion resistance of the coated AZ80 alloy.The corrosion current density of the coated alloy was lower by three orders of magnitude as compared to the uncoated alloy. 展开更多
关键词 Magnesium alloy Citric acid pretreatment Steam coating Layered double hydroxide intermetallic compounds Corrosion resistance
下载PDF
Brittle and ductile characteristics of intermetallic compounds in magnesium alloys: A large-scale screening guided by machine learning
4
作者 Russlan Jaafreh Yoo Seong Kang Kotiba Hamad 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第1期392-404,共13页
In the present work,we have employed machine learning(ML)techniques to evaluate ductile-brittle(DB)behaviors in intermetallic compounds(IMCs)which can form magnesium(Mg)alloys.This procedure was mainly conducted by a ... In the present work,we have employed machine learning(ML)techniques to evaluate ductile-brittle(DB)behaviors in intermetallic compounds(IMCs)which can form magnesium(Mg)alloys.This procedure was mainly conducted by a proxy-based method,where the ratio of shear(G)/bulk(B)moduli was used as a proxy to identify whether the compound is ductile or brittle.Starting from compounds information(composition and crystal structure)and their moduli,as found in open databases(AFLOW),ML-based models were built,and those models were used to predict the moduli in other compounds,and accordingly,to foresee the ductile-brittle behaviors of these new compounds.The results reached in the present work showed that the built models can effectively catch the elastic moduli of new compounds.This was confirmed through moduli calculations done by density functional theory(DFT)on some compounds,where the DFT calculations were consistent with the ML prediction.A further confirmation on the reliability of the built ML models was considered through relating between the DB behavior in MgBe_(13) and MgPd_(2),as evaluated by the ML-predicted moduli,and the nature of chemical bonding in these two compounds,which in turn,was investigated by the charge density distribution(CDD)and electron localization function(ELF)obtained by DFT methodology.The ML-evaluated DB behaviors of the two compounds was also consistent with the DFT calculations of CDD and ELF.These findings and confirmations gave legitimacy to the built model to be employed in further prediction processes.Indeed,as examples,the DB characteristics were investigated in IMCs that might from in three Mg alloy series,involving AZ,ZX and WE. 展开更多
关键词 Mg alloys intermetallic compounds Ductile-brittle Machine learning Algorithm Features DFT
下载PDF
PtCoNi ternary intermetallic compounds anchored on Co,Ni and N co-doped mesoporous carbon:Synergetic effect between PtCoNi nanoparticles and doped mesoporous carbon promotes the catalytic activity
5
作者 Chaozhong Li Weiyue Zhao +10 位作者 Xueyi Lu Zhangsen Chen Bing Han Xiaorong Zhang Jiaxiang Chen Yijia Shao Junlang Huo Yuexiang Zhu Yonghong Deng Shuhui Sun Shijun Liao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期340-349,I0010,共11页
Highly active and robust electrocatalysts are desired for proton exchange membrane fuel cells.Pt-based intermetallic compounds(IMCs) have been recognized as one of the most promising low-platinum catalysts for fuel ce... Highly active and robust electrocatalysts are desired for proton exchange membrane fuel cells.Pt-based intermetallic compounds(IMCs) have been recognized as one of the most promising low-platinum catalysts for fuel cells(FCs).Herein,we report a high-performance IMCs by anchoring ordered PtCoNi ternary nanoparticles on the N,Co and Ni co-doped dodecahedral mesoporous carbon(DMC).While the introduced Co and Ni participate in the formation of PtCoNi IMCs,some of them are doped in the mesoporous carbon and coordinated by N to form Co-N_(y)/Ni-N_(z)dual active centers,which further enhances the electrocatalytic activity towards oxygen reduction reaction.Moreover,the addition of Ni results in a negative shift of the d-band center of Pt as compared to the Pt/DMC and Pt_(3)Co/DMC,making it easier to adsorb oxygen on the surface.As expected,our optimal sample Pt_(3)Co_(0.7)Ni_(0.3)/DMC exhibits excellent performance with mass activity and specific activity of 1.32 A mgPt-1and 1.98 mA cm^(-2)at 0.9 V,which are 7.33and 6.19 times that of commercial Pt/C,respectively.The Pt_(3)Co_(0.7)Ni_(0.3)/DMC also reveals much better cathodic performance in an H2-air single fuel cell than commercial Pt/C catalyst with a power density of0.802 W cm^(-2).This work provides critical sights into constructing efficient catalysts by ternary intermetallic strategy and synergetic effect between active components and support. 展开更多
关键词 Ternary intermetallic compounds Oxygen reduction reaction Fuel cell CATALYST
下载PDF
An innovative joint interface design for reducing intermetallic compounds and improving joint strength of thick plate friction stir welded Al/Mg joints
6
作者 Yang Xu Liming Ke +3 位作者 Yuqing Mao Jifeng Sun Yaxiong Duan Limin Yu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第9期3151-3160,共10页
Friction stir welding of dissimilar Al/Mg thick plates still faces severe challenges, such as poor formability, formation of thick intermetallic compounds, and low joint strength. In this work, two joint configuration... Friction stir welding of dissimilar Al/Mg thick plates still faces severe challenges, such as poor formability, formation of thick intermetallic compounds, and low joint strength. In this work, two joint configurations, namely inclined butt(conventional butt) and serrated interlocking(innovative butt), are proposed for improving weld formation and joint quality. The results show that a continuous and straight intermetallic compound layer appears at the Mg side interface in conventional butt joint, and the maximum average thickness reaches about 60.1 μm.Additionally, the Mg side interface also partially melts, forming a eutectic structure composed of Mg solid solution and Al_(12)Mg_(17) phase.For the innovative butt joint, the Mg side interface presents the curved interlocking feature, and intermetallic compounds can be reduced to less than 10 μm. The joint strength of innovative butt joint is more than three times that of conventional butt joint. This is due to the interlocking effect and thin intermetallic compounds in the innovative joint. 展开更多
关键词 Al/Mg joint Friction stir welding Thick plate intermetallic compounds Joint strength
下载PDF
Computational Modeling of Intergranular Crack Propagation in an Intermetallic Compound Layer
7
作者 Tong An Rui Zhou +3 位作者 Fei Qin Pei Chen Yanwei Dai Yanpeng Gong 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第5期1481-1502,共22页
A micromechanical model is presented to study the initiation and propagation of microcracks of intermetallic compounds(IMCs)in solder joints.The effects of the grain aggregate morphology,the grain boundary defects and... A micromechanical model is presented to study the initiation and propagation of microcracks of intermetallic compounds(IMCs)in solder joints.The effects of the grain aggregate morphology,the grain boundary defects and the sensitivity of the various cohesive zone parameters in predicting the overall mechanical response are investigated.The overall strength is predominantly determined by the weak grain interfaces;both the grain aggregate morphology and the weak grain interfaces control the crack configuration;the different normal and tangential strengths of grain interfaces result in different intergranular cracking behaviors and play a critical role in determining the macroscopic mechanical response of the system. 展开更多
关键词 Cohesive zone element intergranular cracking polycrystalline material intermetallic compound(IMC)
下载PDF
Effect of intermetallic compounds on the fracture behavior of dissimilar friction stir welding joints of Mg and Al alloys 被引量:5
8
作者 Amir Hossein Baghdadi Zainuddin Sajuri +3 位作者 Nor Fazilah Mohamad Selamat Mohd Zaidi Omar Yukio Miyashita Amir Hossein Kokabi 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第10期1285-1298,共14页
Joining Mg to Al is challenging because of the deterioration of mechanical properties caused by the formation of intermetallic compounds(IMCs) at the Mg/Al interface. This study aims to improve the mechanical properti... Joining Mg to Al is challenging because of the deterioration of mechanical properties caused by the formation of intermetallic compounds(IMCs) at the Mg/Al interface. This study aims to improve the mechanical properties of welded samples by preventing the fracture location at the Mg/Al interface. Friction stir welding was performed to join Mg to Al at different rotational and travel speeds. The microstructure of the welded samples showed the IMCs layers containing Al12Mg17(γ) and Al3Mg2(β) at the welding zone with a thickness(< 3.5 μm). Mechanical properties were mainly affected by the thickness of the IMCs, which was governed by welding parameters. The highest tensile strength was obtained at 600 r/min and 40 mm/min with a welding efficiency of 80%. The specimens could fracture along the boundary at the thermo-mechanically affected zone in the Mg side of the welded joint. 展开更多
关键词 aluminum ALLOY magnesium ALLOY intermetallic compounds dissimilar WELDED joint friction STIR welding
下载PDF
Effects of heat treatment on the intermetallic compounds and mechanical properties of the stainless steel 321–aluminum 1230 explosive-welding interface 被引量:4
9
作者 Mohammadreza Khanzadeh Gharah Shiran Gholamreza Khalaj +3 位作者 Hesam Pouraliakbar Mohamma dreza Jandaghi Hamid Bakhtiari Masoud Shirazi 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第11期1267-1277,共11页
The effects of heat treatment on the microstructure and mechanical properties of intermetallic compounds in the interface of stainless steel 321 explosively bonded to aluminum 1230 were investigated in this study. Exp... The effects of heat treatment on the microstructure and mechanical properties of intermetallic compounds in the interface of stainless steel 321 explosively bonded to aluminum 1230 were investigated in this study. Experimental investigations were performed by optical microscopy, scanning electron microscopy, and microhardness and shear tensile strength testing. Prior to heat treatment, increasing the stand-off distance between samples from 1 to 2.5 mm caused their interface to become wavy and the thickness of intermetallic layers to increase from 3.5 to 102.3 μm. The microhardness increased from HV 766 in the sample prepared at a stand-off distance of 1 mm to HV 927 in the sample prepared at a stand-off distance of 2.5 mm; in addition, the sample strength increased from 103.2 to 214.5 MPa. Heat treatment at 450°C for 6 h increased the thickness of intermetallic compound layers to 4.4 and 118.5 μm in the samples prepared at stand-off distances of 1 and 2.5 mm, respectively. These results indicated that increasing the duration and temperature of heat treatment decreased the microhardness and strength of the interface of explosively welded stainless steel 321-Al 1230 and increased the thickness of the intermetallic region. 展开更多
关键词 intermetallic compounds EXPLOSIVE WELDING heat treatment stand-off distance MECHANICAL properties
下载PDF
Review of magnetic properties and magnetocaloric effect in the intermetallic compounds of rare earth with low boiling point metals 被引量:9
10
作者 李领伟 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第3期1-15,共15页
The magnetocaloric effect (MCE) in many rare earth (RE) based intermetallic compounds has been extensively in- vestigated during the last two decades, not only due to their potential applications for magnetic refr... The magnetocaloric effect (MCE) in many rare earth (RE) based intermetallic compounds has been extensively in- vestigated during the last two decades, not only due to their potential applications for magnetic refrigeration but also for better understanding of the fundamental problems of the materials. This paper reviews our recent progress on studying the magnetic properties and MCE in some binary or ternary intermetallic compounds of RE with low boiling point metal(s) (Zn, Mg, and Cd). Some of them exhibit promising MCE properties, which make them attractive for low temperature magnetic refrigeration. Characteristics of the magnetic transition, origin of large MCE, as well as the potential application of these compounds are thoroughly discussed. Additionally, a brief review of the magnetic and magnetocaloric properties in the quaternary rare earth nickel boroncarbides RENi2B2C superconductors is also presented. 展开更多
关键词 magnetocaloric effect rare earth based intermetallic compounds RENizB2C superconductors magnetic phase transition
下载PDF
Twinning in Intermetallic Compounds Are Long Shear Vectors and/or Shuffles Really Necessary? 被引量:4
11
作者 F.M.Chu David P.Pope Dept.of Materials Science and Engineering,University of Pennsylvania,Philadelphia,PA 19104,USA 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1993年第5期313-321,共9页
In this paper the geometric description and general theory of mechanical twinning are reviewed, the twins in general lattices and superlattices are summarized, and the kinetic process by which mechanical twins form is... In this paper the geometric description and general theory of mechanical twinning are reviewed, the twins in general lattices and superlattices are summarized, and the kinetic process by which mechanical twins form is revisited. A case study of mechanical twinning of HfV2+Nb, (cubic) Laves phase, is presented and the synchroshear of selected atomic layers is proposed to explain the physical process of twin formation. If the twins form in this way, then long shear vectors and / or atomicshuffles are not really necessary. 展开更多
关键词 TWIN intermetallic compounds shear vector shuffles
下载PDF
Remarkably reducing carbon loss and H2 consumption on Ni–Ga intermetallic compounds in deoxygenation of methyl esters to hydrocarbons 被引量:2
12
作者 Ning Zhao Ying Zheng Jixiang Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第2期194-208,共15页
Ni–Ga alloy(Ni/Ga atomic ratio of 8),Ni3Ga and Ni5Ga3 intermetallic compounds(IMCs)catalysts were prepared from Ni–Mg-Al-Ga layered double hydroxides(LDHs)for the deoxygenation of methyl esters to hydrocarbons.In th... Ni–Ga alloy(Ni/Ga atomic ratio of 8),Ni3Ga and Ni5Ga3 intermetallic compounds(IMCs)catalysts were prepared from Ni–Mg-Al-Ga layered double hydroxides(LDHs)for the deoxygenation of methyl esters to hydrocarbons.In the alloy and IMCs,the presence of Ga reduced the surface Ni atom density,and the charge transfer from Ga to Ni increased the electron density of Ni.In the deoxygenation of methyl laurate,the Ni catalyst gave a complete hydrogenolysis of methyl laurate to CH4at 330°C and 3.0 MPa,while the presence of Ga promoted the HDO pathway and suppressed C–C bond hydrogenolysis and methanation.The Ni5Ga3 catalyst exhibited the best desired performance.Even at 400°C,it gave the yield of C11 and C12 hydrocarbons of ~99%,and the selectivity to CH4(SCH4) was only 2.4%.In the deoxygenation of methyl octanoate and methyl palmitate,the Ni5Ga3 catalyst also gave the yield of hydrocarbons above95%.Reactivity evaluation and methyl propionate-TPD and TPSR results indicate that the C–OCH3 bond instead of the O–CH3 one was cleaved on both Ni and bimetallic Ni–Ga catalysts.It is highlighted that methanol,derived from the C–OCH3 bond hydrogenolysis,mainly decomposed to CO and H2 on IMCs,while it was converted to methane on metallic Ni and alloy.It is of great significance that H2 could be yielded from the methyl ester itself.In short,the utilization of Ni–Ga IMCs can effectively reduce carbon loss and H2 consumption,all of which are ascribed to the geometric and electronic effects of Ga. 展开更多
关键词 Ni–Ga intermetallic compounds Methyl ester Decarbonylation/decarboxylation HYDRODEOXYGENATION C–C bond HYDROGENOLYSIS Methanation
下载PDF
ONE-CELL-STATE METHOD FOR DETERMINATION OF ELECTRONIC STRUCTURE OF INTERMETALLIC COMPOUNDS 被引量:2
13
作者 Gao Yingjun , Chen Zhenhua , Huang Peiyun and Zhong Xiaping Institute of Nonequilibrium Materials, Central South University of Technology, Changsha 410083, P. R. China Physical Department, Guangxi University, Nanning 530004, P 《中国有色金属学会会刊:英文版》 CSCD 1998年第4期19-24,共6页
INTRODUCTIONInrecentyears,thePauling’svalencebond(VB)theoryhasbenmadeagreatprogresindesigninganddeterminingt... INTRODUCTIONInrecentyears,thePauling’svalencebond(VB)theoryhasbenmadeagreatprogresindesigninganddeterminingtheatomicstate,and... 展开更多
关键词 ONE cell STATE METHOD intermetallic compound ELECTRONIC STRUCTURE charge transfer Al 3Li
下载PDF
Crystallographic Characteristic of Intermetallic Compounds in Al-Si-Mg Casting Alloys Using Electron Backscatter Diffraction 被引量:2
14
作者 ZOU Yongzhi XU Zhengbing +1 位作者 HE Juan ZENG Jianmin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第3期305-311,共7页
The Al-Si-Mg alloy which can be strengthened by heat treatment is widely applied to the key components of aerospace and aeronautics. Iron-rich intermetallic compounds are well known to be strongly influential on mecha... The Al-Si-Mg alloy which can be strengthened by heat treatment is widely applied to the key components of aerospace and aeronautics. Iron-rich intermetallic compounds are well known to be strongly influential on mechanical properties in Al-Si-Mg alloys. But intermetallic compounds in cast Al-Si-Mg alloy intermetallics are often misidentified in previous metallurgical studies. It was described as many different compounds, such as AlFeSi, Al8Fe2Si, Al5(Fe, Mn)3Si2 and so on. For the purpose of solving this problem, the intermetallic compounds in cast Al-Si alloys containing 0.5% Mg were investigated in this study. The iron-rich compounds in Al-Si-Mg casting alloys were characterized by optical microscope(OM), scanning electron microscope(SEM), energy dispersive X-ray spectrometer(EDS), electron backscatter diffraction(EBSD) and X-ray powder diffraction(XRD). The electron backscatter diffraction patterns were used to assess the crystallographic characteristics of intermetallic compounds. The compound which contains Fe/Mg-rich particles with coarse morphologies was Al8FeMg3Si6 in the alloy by using EBSD. The compound belongs to hexagonal system, space group P6_2m, with the lattice parameter a=0.662 nm, c=0.792 nm. The β-phase is indexed as tetragonal Al3FeSi2, space group I4/mcm, a=0.607 nm and c=0.950 nm. The XRD data indicate that Al8FeMg3Si6 and Al3FeSi2 are present in the microstructure of Al-7Si-Mg alloy, which confirms the identification result of EBSD. The present study identified the iron-rich compound in Al-Si-Mg alloy, which provides a reliable method to identify the intermetallic compounds in short time in Al-Si-Mg alloy. Study results are helpful for identification of complex compounds in alloys. 展开更多
关键词 Al-Si-Mg alloys intermetallic compound electron backscatter diffraction(EBSD) X-ray powder diffraction(XRD)
下载PDF
Evolution of AuSnx intermetallic compounds in laser reflowed micro-solder joints 被引量:2
15
作者 刘威 安荣 +3 位作者 王春青 田艳红 杨磊 孙立宁 《China Welding》 EI CAS 2011年第1期7-11,共5页
To investigate the effect of Au thickness on evolution of AuSnx IMCs, pads with 0. 1, 0. 5 and 4. 0 μm thickness of Au surface finish were utilized. Laser reflowed solder joints were aged in 125℃ isothermal ovens. R... To investigate the effect of Au thickness on evolution of AuSnx IMCs, pads with 0. 1, 0. 5 and 4. 0 μm thickness of Au surface finish were utilized. Laser reflowed solder joints were aged in 125℃ isothermal ovens. Results indicated that little IMC formed at the interface of solder and pad with 0. 1 μm thickness of Au. Even in condition of 744 hours aging, thickness of lMCs did not increase obviously. As for the joints with 0. 5 μm thickness of Au, most of AuSn4 IMCs stayed at the inteornce and were in needle-like or dendritic morphology. With the increase of aging time, AuSn4 IMCs beeame flat and changed to a continuous layer. In the joints with 4. 0 μm thickness of Au on pads, AuSn, AuSn2, AuSn4 IMCs and Au2Sn phase formed at the interface. As aging time was increased, more Sn rich IMCs formed at the interface, and evolved to AuSn4 IMCs in condition of long time aging. Thickness of AuSn4 IMCs reached about 30μm. 展开更多
关键词 AU AuSnx intermetallic compounds laser reflowed micro-solder joints
下载PDF
ANOMALOUS STRAIN RATE DEPENDENCE OF FLOW STRESS IN TiAl INTERMETALLIC COMPOUNDS 被引量:1
16
作者 WANG Liming ZHU Dong YAO Mei CAI Qigong ZOU Dunxu State Key Laboratory for Fatigue and Fracture of Materials,Academia Sinica,Shenyang Central Iron and Steel Research Institute,Ministry of Metallurgical Industry,Beijing,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1992年第5期390-394,共5页
Plastic deformation of TiAI and TiAI-V intermetallic compounds has been studied by com- pression experiment at various temperatures and strain rates.Results show that the plastic deformation in distinct temperature ra... Plastic deformation of TiAI and TiAI-V intermetallic compounds has been studied by com- pression experiment at various temperatures and strain rates.Results show that the plastic deformation in distinct temperature range is principally controlled by the mechanisms of Peierls-Nabarro,cross slip and creep of dislocations.For TiAI-V alloy deformed at a range of 600—700 K,the negative strain rate dependence of flow stress was observed,i.e.,the more the plastic strain is.the more the negative dependence will be.A possible mechanism of the anomaly could be interpreted by thermal activation of dislocation cross slipping.The effects of temperature and strain rate on work-hardening exponent were also studied and discussed. 展开更多
关键词 TIAL intermetallic compound strain rate CROSS-SLIP
下载PDF
SURFACE REACTION,HYDROGEN DIFFUSIVITY AND ENVIRONMENTAL EMBRITTLEMENT OF INTERMETALLIC COMPOUNDS Ni_3Al AND Fe_3Al 被引量:1
17
作者 WAN Xiaojing ZHU Jiahong HUANG Shengbiao(Shanghai University. Shanghai 200072, China) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1995年第Z1期299-300,301302+303-3,共8页
The effect of boron doping on the sensitivity to environmental embrittlement of Ni3Al-based alloys was investigated in this paper. The results show that the ductilizing effect of boron in Ni3Al is partly to suppress ... The effect of boron doping on the sensitivity to environmental embrittlement of Ni3Al-based alloys was investigated in this paper. The results show that the ductilizing effect of boron in Ni3Al is partly to suppress moisture-induced hydrogen embrittlement.The mechanism of this suppressing effect of boron relates to its severely decreasing the hydrogen diffusivity by boron segregated at the grain boundaries. The surface reaction of Fe3Al with water vapor and oxygen was experimentally confirmed by AES and XPS analysis. The kinetics of these reactions can be used to explain the different ductility behavior of aluminides in various environments. 展开更多
关键词 environmental embrittlement hydrogen diffusivity surface reaction intermetallic compound
下载PDF
Ceramic bonding and joint's strengthening through forming intermetallic compounds in situ 被引量:3
18
作者 邹贵生 吴爱萍 +2 位作者 任家烈 杨俊 赵文庆 《中国有色金属学会会刊:英文版》 CSCD 2004年第1期93-98,共6页
The transient liquid phase diffusion bonding of Si 3N 4 ceramics with Ti/Ni/Ti and Al/Ti/Al multiple interlayers was performed. The formation of intermetallic compounds in situ and their effects on the joints streng... The transient liquid phase diffusion bonding of Si 3N 4 ceramics with Ti/Ni/Ti and Al/Ti/Al multiple interlayers was performed. The formation of intermetallic compounds in situ and their effects on the joints strengths were investigated. The Ti/Ni/Ti interlayers produce NiTi and Ni 3Ti layers with considerable room temperature ductility and high elevated temperature strength to strengthen the bonding zone metals and the joints. The joints with 142 MPa shear strength at room temperature and 88 MPa shear strength at 800 ℃ are achieved under appropriate parameters, respectively. Al/Ti/Al interlayers transform into a special bonding zone metal with a large amount of Al 3Ti particles and a small amount of Al based solid solution, and in this case, the joints are strengthened significantly. Their strengths at room temperature and 600 ℃ reach 90 MPa and 30 MPa, respectively. 展开更多
关键词 钎焊 金属间化合物 原位反应 陶瓷/金属连接 机械性能
下载PDF
Environmental corrosion resistance of porous TiAl intermetallic compounds 被引量:3
19
作者 郑治 江垚 +3 位作者 董虹星 汤烈明 贺跃辉 黄伯云 《中国有色金属学会会刊:英文版》 CSCD 2009年第3期581-585,共5页
Porous TiAl intermetallic compound, as a novel substitute for current inorganic porous material, offsets the shortages of both ceramics and metals. The environmental corrosion resistance of porous TiAl intermetallic c... Porous TiAl intermetallic compound, as a novel substitute for current inorganic porous material, offsets the shortages of both ceramics and metals. The environmental corrosion resistance of porous TiAl intermetallic compound was investigated. The kinetic equation for the cyclic oxidation of porous TiAl alloy at 600 ℃ is determined to be △m2=1.08×10-5t. After total oxidation of 140 h, porous TiAl intermetallic compound shows more stability of pore structure and the mass gain of TiAl alloy is 0.042 g/m2, which is only 10.6% that of porous 316L stainless steel. The kinetic equation for the cyclic corrosion behavior of porous TiAl alloy in hydrochloric acid with pH=2 at 90 ℃ is determined to be △m2=5.41×10-5t-2.08×10-4. After 50 h exposure, the mass loss of TiAl alloy is 0.049 g/m2, which is only 14.8% and 5.57% that of porous Ti and stainless steel, respectively. The kinetic equation in hydrochloric acid with pH=3 is determined to be △m2=2.63×10-6t-3.72×10-6. 展开更多
关键词 TIAL金属间化合物 多孔材料 环境 TIAL合金 316L不锈钢 耐腐蚀 动力学方程 循环氧化
下载PDF
Sliding wear and friction behavior of ZA-27 alloy reinforced by Mn-containing intermetallic compounds 被引量:1
20
作者 龙雁 李元元 +2 位作者 张大童 邱诚 陈维平 《中国有色金属学会会刊:英文版》 EI CSCD 2002年第4期775-779,共5页
A ZA 27 alloy reinforced with Mn containing intermetallic compounds was prepared and its tribological behaviors were investigated. By adding Mn, RE, Ti and B into ZA 27 alloy, the test alloy (ZMJ) was fabricated by sa... A ZA 27 alloy reinforced with Mn containing intermetallic compounds was prepared and its tribological behaviors were investigated. By adding Mn, RE, Ti and B into ZA 27 alloy, the test alloy (ZMJ) was fabricated by sand casting. Microstructural analysis shows that considerable amount of Mn containing intermetallic compounds such as Al 5MnZn, Al 9(MnZn) 2 and Al 65 Mn(RE) 6Ti 4Zn 36 are formed. Compared to ZA 27, ZMJ shows better wear resistance, lower friction coefficient and lower temperature rise of worn surface under lubricated sliding condition. ZMJ also shows the lowest steady friction coefficient under dry friction condition. The wear resistance improvement of ZMJ is mainly attributed to the high hardness and good dispersion of these Mn containing intermetallic compounds. It is indicated that the intermetallic compounds play a dominant role in reducing the sever adhesive and abrasive wear of the ZA 27 alloy. 展开更多
关键词 ZN-AL合金 锌合金 滑动磨损 摩擦 锰系金属间化合物
下载PDF
上一页 1 2 107 下一页 到第
使用帮助 返回顶部