Two-dimensional honeycomb lattices show great potential in the realization of Dirac nodal line fermions(DNLFs).Here,we successfully synthesized a gold telluride(AuTe)monolayer by direct tellurizing an Au(111)substrate...Two-dimensional honeycomb lattices show great potential in the realization of Dirac nodal line fermions(DNLFs).Here,we successfully synthesized a gold telluride(AuTe)monolayer by direct tellurizing an Au(111)substrate.Low energy electron diffraction measurements reveal that it is(2×2)AuTe layer stacked onto(3×3)Au(111)substrate.Moreover,scanning tunneling microscopy images show that the AuTe layer has a honeycomb structure.Scanning transmission electron microscopy reveals that it is a single-atom layer.In addition,first-principles calculations demonstrate that the honeycomb AuTe monolayer exhibits Dirac nodal line features protected by mirror symmetry,which is validated by angle-resolved photoemission spectra.Our results establish that monolayer AuTe can be a good candidate to investigate 2D DNLFs and provides opportunities to realize high-speed low-dissipation devices.展开更多
基金Project supported by the National Key R&D Program of China (Grant No.2018YFA0305800)the National Natural Science Foundation of China (Grant Nos.61925111,61888102,and 52102193)+2 种基金the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos.XDB28000000 and XDB30000000)CAS Project for Young Scientists in Basic Research (Grant No.YSBR-003)the Fundamental Research Funds for the Central Universities。
文摘Two-dimensional honeycomb lattices show great potential in the realization of Dirac nodal line fermions(DNLFs).Here,we successfully synthesized a gold telluride(AuTe)monolayer by direct tellurizing an Au(111)substrate.Low energy electron diffraction measurements reveal that it is(2×2)AuTe layer stacked onto(3×3)Au(111)substrate.Moreover,scanning tunneling microscopy images show that the AuTe layer has a honeycomb structure.Scanning transmission electron microscopy reveals that it is a single-atom layer.In addition,first-principles calculations demonstrate that the honeycomb AuTe monolayer exhibits Dirac nodal line features protected by mirror symmetry,which is validated by angle-resolved photoemission spectra.Our results establish that monolayer AuTe can be a good candidate to investigate 2D DNLFs and provides opportunities to realize high-speed low-dissipation devices.