This paper investigates a double auction-based peer-to-peer(P2P)energy trading market for a community of renewable prosumers with private information on reservation price and quantity of energy to be traded.A novel co...This paper investigates a double auction-based peer-to-peer(P2P)energy trading market for a community of renewable prosumers with private information on reservation price and quantity of energy to be traded.A novel competition padding auction(CPA)mechanism for P2P energy trading is proposed to address the budget deficit problem while holding the advantages of the widely-used Vickrey-Clarke-Groves mechanism.To illustrate the theoretical properties of the CPA mechanism,the sufficient conditions are identified for a truth-telling equilibrium with a budget surplus to exist,while further proving its asymptotical economic efficiency.In addition,the CPA mechanism is implemented through consortium blockchain smart contracts to create safer,faster,and larger P2P energy trading markets.The proposed mechanism is embedded into blockchain consensus protocols for high consensus efficiency,and the budget surplus of the CPA mechanism motivates the prosumers to manage the blockchain.Case studies are carried out to show the effectiveness of the proposed method.展开更多
In recent years, auction theory has been extensively studied and many state-of-the-art solutions have been proposed aiming at allocating scarce resources. However, most of these studies assume that the auctioneer is a...In recent years, auction theory has been extensively studied and many state-of-the-art solutions have been proposed aiming at allocating scarce resources. However, most of these studies assume that the auctioneer is always trustworthy in the sealed-bid auctions, which is not always true in a more realistic scenario. Besides the privacy-preserving issue, the performance guarantee of social efficiency maximization is also crucial for auction mechanism design. In this paper, we study the auction mechanisms that consider the above two aspects. We discuss two multi-unit auction models: the identical multiple-items auction and the distinct multiple-items auction.Since the problem of determining a multi-unit auction mechanism that can maximize its social efficiency is NPhard, we design a series of nearly optimal multi-unit auction mechanisms for the proposed models. We prove that the proposed auction mechanisms are strategyproof. Moreover, we also prove that the privacy of bid value from each bidder can be preserved in the auction mechanisms. To the best of our knowledge, this is the first work on the strategyproof multi-unit auction mechanisms that simultaneously consider privacy preservation and social efficiency maximization. The extensive simulations show that the proposed mechanisms have low computation and communication overheads.展开更多
The art market,following the example of financial markets,is divided into a primary market,where works are traded directly from artists,and a secondary market that is mainly the auction market.COVID-19 and galloping i...The art market,following the example of financial markets,is divided into a primary market,where works are traded directly from artists,and a secondary market that is mainly the auction market.COVID-19 and galloping inflation have influenced the creation of a bull market in artwork.The high incomes of some buyers and inflation have influenced the emergence of the so-called“glittery”art market.Works by neglected artists have“very much taken on a life of their own”:fantasy art,works by young poster artists,casting“nightmares”-have been selling well for more than a year.People terrified of inflation are putting their money“in works of art”.The auction market dominates the primary market because anonymity makes it easier to enter the art market.The gallery market does not guarantee this anonymity.Very often,the auction market for works of art is used for money laundering.The purpose of this paper is to show that auction mechanisms are a good tool for the efficient allocation of goods and money in an era of galloping inflation,including non-standard objects such as works of art.These mechanisms,due to the information asymmetry,often lead to the generation of all kinds of pathologies and the increasing incidence of the phenomenon known as the winner’s curse.展开更多
Cloud warehousing service (CWS) has emerged as a promising third-party logistics service paradigm driven by the widespread use of e-commerce. The current CWS billing method is typically based on a fixed rate in a coar...Cloud warehousing service (CWS) has emerged as a promising third-party logistics service paradigm driven by the widespread use of e-commerce. The current CWS billing method is typically based on a fixed rate in a coarse-grained manner. This method cannot reflect the true service value under the fluctuating e-commerce logistics demand and is not conducive to CWS resilience management. Accordingly, a floating mechanism can be considered to introduce more flexible billing. A CWS provider lacks sufficient credibility to implement floating mechanisms because it has vested interests in terms of fictitious demand. To address this concern, this report proposes a blockchain-enabled floating billing management system as an overall solution for CWS providers to enhance the security, credibility, and transparency of CWS. A one-sided Vickrey–Clarke–Groves (O-VCG) auction mechanism model is designed as the underlying floating billing mechanism to reflect the real-time market value of fine-grained CWS resources. A blockchain-based floating billing prototype system is built as an experimental environment. Our results show that the O-VCG mechanism can effectively reflect the real-time market value of CWSs and increase the revenue of CWS providers. When the supply of CWS providers remains unchanged, allocation efficiency increases when demand increases. By analyzing the performance of the O-VCG auction and comparing it with that of the fixed-rate billing model, the proposed mechanism has more advantages. Moreover, our work provides novel managerial insights for CWS market stakeholders in terms of practical applications.展开更多
Increasing penetration of distributed energy resources(DERs)introduced by different stakeholders,poses an immense challenge to power network operators.The traditional direct control of local DERs has the risk of viola...Increasing penetration of distributed energy resources(DERs)introduced by different stakeholders,poses an immense challenge to power network operators.The traditional direct control of local DERs has the risk of violating preferences and privacies of stakeholders.A promising solution for supplydemand coordination is to utilize a transactive energy(TE)based energy management method to indirectly coordinate the local DERs,which enables the distribution-level energy providers,consumers,and prosumers to trade energy with each other through a transactive energy system(TES)trading platform.This paper provides a comprehensive review of a TES and presents a detailed classification from different perspectives,including TES participants,structure,commodity,clearing method,and solution algorithm.The presented detailed component-scale classification can be used as a reference for future TES designs.Finally,two additional market tools,i.e.,penalty mechanism and loss allocation mechanism,are discussed as future focus areas,which can be seen as necessary complements to a TES for ensuring feasibility and fairness of energy trading.展开更多
基金supported by the National Natural Science Foundation of China(No.52207108),and by the Science and Technology Project of State Grid Corporation of China(No.1400202099523 A0000).
文摘This paper investigates a double auction-based peer-to-peer(P2P)energy trading market for a community of renewable prosumers with private information on reservation price and quantity of energy to be traded.A novel competition padding auction(CPA)mechanism for P2P energy trading is proposed to address the budget deficit problem while holding the advantages of the widely-used Vickrey-Clarke-Groves mechanism.To illustrate the theoretical properties of the CPA mechanism,the sufficient conditions are identified for a truth-telling equilibrium with a budget surplus to exist,while further proving its asymptotical economic efficiency.In addition,the CPA mechanism is implemented through consortium blockchain smart contracts to create safer,faster,and larger P2P energy trading markets.The proposed mechanism is embedded into blockchain consensus protocols for high consensus efficiency,and the budget surplus of the CPA mechanism motivates the prosumers to manage the blockchain.Case studies are carried out to show the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China (Nos. 61572342 and 61672369)the Natural Science Foundation of Jiangsu Province (Nos. BK20151240 and BK20161258)China Postdoctoral Science Foundation (Nos. 2015M580470 and 2016M591920)
文摘In recent years, auction theory has been extensively studied and many state-of-the-art solutions have been proposed aiming at allocating scarce resources. However, most of these studies assume that the auctioneer is always trustworthy in the sealed-bid auctions, which is not always true in a more realistic scenario. Besides the privacy-preserving issue, the performance guarantee of social efficiency maximization is also crucial for auction mechanism design. In this paper, we study the auction mechanisms that consider the above two aspects. We discuss two multi-unit auction models: the identical multiple-items auction and the distinct multiple-items auction.Since the problem of determining a multi-unit auction mechanism that can maximize its social efficiency is NPhard, we design a series of nearly optimal multi-unit auction mechanisms for the proposed models. We prove that the proposed auction mechanisms are strategyproof. Moreover, we also prove that the privacy of bid value from each bidder can be preserved in the auction mechanisms. To the best of our knowledge, this is the first work on the strategyproof multi-unit auction mechanisms that simultaneously consider privacy preservation and social efficiency maximization. The extensive simulations show that the proposed mechanisms have low computation and communication overheads.
文摘The art market,following the example of financial markets,is divided into a primary market,where works are traded directly from artists,and a secondary market that is mainly the auction market.COVID-19 and galloping inflation have influenced the creation of a bull market in artwork.The high incomes of some buyers and inflation have influenced the emergence of the so-called“glittery”art market.Works by neglected artists have“very much taken on a life of their own”:fantasy art,works by young poster artists,casting“nightmares”-have been selling well for more than a year.People terrified of inflation are putting their money“in works of art”.The auction market dominates the primary market because anonymity makes it easier to enter the art market.The gallery market does not guarantee this anonymity.Very often,the auction market for works of art is used for money laundering.The purpose of this paper is to show that auction mechanisms are a good tool for the efficient allocation of goods and money in an era of galloping inflation,including non-standard objects such as works of art.These mechanisms,due to the information asymmetry,often lead to the generation of all kinds of pathologies and the increasing incidence of the phenomenon known as the winner’s curse.
基金supported by the National Natural Science Foundation of China(Grant Nos.52005218 and 72071093)RGC TRS Project(Grant No.T32-707-22-N)the Guangdong Basic and Applied Basic Research Foundation(Guangdong Natural Science Fund,Grant No.2019A1515110296).
文摘Cloud warehousing service (CWS) has emerged as a promising third-party logistics service paradigm driven by the widespread use of e-commerce. The current CWS billing method is typically based on a fixed rate in a coarse-grained manner. This method cannot reflect the true service value under the fluctuating e-commerce logistics demand and is not conducive to CWS resilience management. Accordingly, a floating mechanism can be considered to introduce more flexible billing. A CWS provider lacks sufficient credibility to implement floating mechanisms because it has vested interests in terms of fictitious demand. To address this concern, this report proposes a blockchain-enabled floating billing management system as an overall solution for CWS providers to enhance the security, credibility, and transparency of CWS. A one-sided Vickrey–Clarke–Groves (O-VCG) auction mechanism model is designed as the underlying floating billing mechanism to reflect the real-time market value of fine-grained CWS resources. A blockchain-based floating billing prototype system is built as an experimental environment. Our results show that the O-VCG mechanism can effectively reflect the real-time market value of CWSs and increase the revenue of CWS providers. When the supply of CWS providers remains unchanged, allocation efficiency increases when demand increases. By analyzing the performance of the O-VCG auction and comparing it with that of the fixed-rate billing model, the proposed mechanism has more advantages. Moreover, our work provides novel managerial insights for CWS market stakeholders in terms of practical applications.
基金This work is supported by the National Research Foundation of Singapore,and the Energy Market Authority,under the Exploiting Distributed Generation(EDGE)Programme and administrated by the EDGE Programme Office(EDGE Programme Award No.EDGEGC2018-003).
文摘Increasing penetration of distributed energy resources(DERs)introduced by different stakeholders,poses an immense challenge to power network operators.The traditional direct control of local DERs has the risk of violating preferences and privacies of stakeholders.A promising solution for supplydemand coordination is to utilize a transactive energy(TE)based energy management method to indirectly coordinate the local DERs,which enables the distribution-level energy providers,consumers,and prosumers to trade energy with each other through a transactive energy system(TES)trading platform.This paper provides a comprehensive review of a TES and presents a detailed classification from different perspectives,including TES participants,structure,commodity,clearing method,and solution algorithm.The presented detailed component-scale classification can be used as a reference for future TES designs.Finally,two additional market tools,i.e.,penalty mechanism and loss allocation mechanism,are discussed as future focus areas,which can be seen as necessary complements to a TES for ensuring feasibility and fairness of energy trading.