Although blockchain technology has received a significant amount of cutting-edge research on constructing a novel carbon trade market in theory,there is little research on using blockchain in carbon emission trading s...Although blockchain technology has received a significant amount of cutting-edge research on constructing a novel carbon trade market in theory,there is little research on using blockchain in carbon emission trading schemes(ETS).This study intends to address existing gaps in the literature by creating and simulating an ETS system based on blockchain technology.Using the ciphertext-policy attributed-based encryption algorithm and the Fabric network to build a platform may optimize the amount of data available while maintaining privacy security.Considering the augmentation of information interaction during the auction process brought about by blockchain,the learning behavior of bidding firms is introduced to investigate the impact of blockchain on ETS auction.In particular,implementing smart contracts can provide a swift and automatic settlement.The simulation results of the proposed system demonstrate the following:(1)fine-grained access is possible with a second delay;(2)the average annual compliance levels increase by 2%when bidders’learning behavior is considered;and(3)the blockchain network can process more than 350 reading operations or 7 writing operations in a second.Novel cooperative management of an ETS platform based on blockchain is proposed.The data access control policy based on CP-ABE is used to solve the contradiction between data privacy on the firm chain and government supervision.A learned auction strategy is proposed to suit the enhancement of information interaction caused by blockchain technology.This study provides a new method for climate change policymakers to consider the blockchain application of the carbon market.展开更多
Sealed-bid auctions are a vital transaction tool in the e-commerce field.Traditional centralized auction schemes typically result in severe threats to data integrity,information transparency,and traceability owing to ...Sealed-bid auctions are a vital transaction tool in the e-commerce field.Traditional centralized auction schemes typically result in severe threats to data integrity,information transparency,and traceability owing to their excessive reliance on third parties,and blockchain-based auction schemes generally suffer from high storage costs and are deficient in functional and architectural design.To solve these problems,this study presents a sealed-bid auction scheme that removes the third-party based on an Ethereum smart contract,ensuring data integrity,openness,and transparency in the execution process.The commitment mechanism and distributed storage system help to significantly reduce the user’s storage cost and protect the privacy of user bids.For the functional design,this study introduces a fulltext-retrieval and dispute-processing module for commodities,which reduces the defects existing in the functional module design of existing auction systems.Furthermore,a prototype auction system on the Ethereum test chain is built to validate the proposed scheme.Experiments show that compared with traditional storage methods,indirect storage based on a distributed storage system of texts and images can reduce the storage cost by at least 50%while ensuring data integrity.Finally,the gas cost at each stage of the auction scheme and the time required for the full-text retrieval of products are recorded to evaluate the scheme performance and analyze the test results.展开更多
In this era of digital domination,it is fit to say that individuals are more inclined towards viewership on online platforms due to the wide variety and the scope of individual preferences it provides.In the past few ...In this era of digital domination,it is fit to say that individuals are more inclined towards viewership on online platforms due to the wide variety and the scope of individual preferences it provides.In the past few years,there has been a massive growth in the popularity of Over-The-Top platforms,with an increasing number of consumers adapting to them.The Covid-19 pandemic has also caused the proliferation of these services as people are restricted to their homes.Consumers are often in a dilemma about which subscription plan to choose,and this iswhere a recommendation systemmakes their task easy.The Subscription recommendation system allows potential users to pick the most suitable and convenient plan for their daily consumption from diverse OTT platforms.The economic equilibrium behind allocating these resources follows a unique voting and bidding system propped by us in this paper.The systemis dependent on two types of individuals,type 1 seeking the recommendation plan,and type 2 suggesting it.In our study,the system collaborates with the latterwho participate in voting and invest/bid in the available options,keeping in mind the user preferences.This architecture runs on an interface where the candidates can login to participate at their convenience.As a result,selective participants are awarded monetary gains considering the rules of the suggested mechanism,and the most voted subscription plan gets recommended to the user.展开更多
Auctions are important market mechanisms for the allocation of goods and services. Combinatorial auctions are those auctions in which buyers can place bids on combinations of items. Combinatorial auctions have many ap...Auctions are important market mechanisms for the allocation of goods and services. Combinatorial auctions are those auctions in which buyers can place bids on combinations of items. Combinatorial auctions have many applications. The paper presents the CRAB software system. CRAB is a non-commercial software system for generating, solving, and testing of combinatorial auction problems. The system solves problems by Balas’ method or by the primal-dual algo-rithm. CRAB is implemented in Ruby and it is distributed as the file crab.rb. The system is freely available on web pag-es for all interested展开更多
With the development of Big Data and the Internet of Things(IoT),the data value is more significant in both academia and industry.Trading can achieve maximal data value and prepare data for smart city services.Due to ...With the development of Big Data and the Internet of Things(IoT),the data value is more significant in both academia and industry.Trading can achieve maximal data value and prepare data for smart city services.Due to data's unique characteristics,such as dispersion,heterogeneity and distributed storage,an unbiased platform is necessary for the data trading market with rational trading entities.Meanwhile,there are multiple buyers and sellers in a practical data trading market,and this makes it challenging to maximize social welfare.To solve these problems,this paper proposes a Social-Welfare-Oriented Many-to-Many Trading Mechanism(SOMTM),which integrates three entities,a trading process and an algorithm named Many-to-Many Trading Algorithm(MMTA).Based on the market scale,market dominated-side and market fixed-side,simulations verify the convergency,economic properties and efficiency of SOMTM.展开更多
Offloading Mobile Devices(MDs)computation tasks to Edge Nodes(ENs)is a promising solution to overcome computation and energy resources limitations of MDs.However,there exists an unreasonable profit allocation problem ...Offloading Mobile Devices(MDs)computation tasks to Edge Nodes(ENs)is a promising solution to overcome computation and energy resources limitations of MDs.However,there exists an unreasonable profit allocation problem between MDs and ENs caused by the excessive concern on MD profit.In this paper,we propose an auction-based computation offloading algorithm,inspiring ENs to provide high-quality service by maximizing the profit of ENs.Firstly,a novel cooperation auction framework is designed to avoid overall profit damage of ENs,which is derived from the high computation delay at the overloaded ENs.Thereafter,the bidding willingness of each MD in every round of auction is determined to ensure MD rationality.Furthermore,we put forward a payment rule for the pre-selected winner to effectively guarantee auction truthfulness.Finally,the auction-based profit maximization offloading algorithm is proposed,and the MD is allowed to occupy the computation and spectrum resources of the EN for offloading if it wins the auction.Numerical results verify the performance of the proposed algorithm.Compared with the VA algorithm,the ENs profit is increased by 23.8%,and the task discard ratio is decreased by 7.5%.展开更多
利用清洁能源发电富余电力电解水制氢,绿色氢能实现了生产源头的二氧化碳零排放,在全球能源转型中扮演着重要角色。针对绿色氢能证书市场机制不健全等问题,该文提出一种考虑绿色氢能证书组合双向拍卖和水电制氢的综合能源系统优化运行...利用清洁能源发电富余电力电解水制氢,绿色氢能实现了生产源头的二氧化碳零排放,在全球能源转型中扮演着重要角色。针对绿色氢能证书市场机制不健全等问题,该文提出一种考虑绿色氢能证书组合双向拍卖和水电制氢的综合能源系统优化运行方法。首先,为解决园区内绿色氢能证书价格和数量匹配不均衡的问题,提出绿色氢能证书组合双向拍卖(combinatorial double auction,CDA)交易机制竞价模型;其次,建立含水电制氢的综合能源系统优化模型,并将绿色氢能证书组合双向拍卖机制引入其中;最后,以某省含水电制氢的综合能源系统为例进行仿真分析,结果表明所提模型不仅能有效提高综合能源系统(integrated energy system,IES)的运行经济性,也能提升可再生能源的消纳量。展开更多
The airspace congestion is becoming more and more severe.Although there are traffic flow management(TFM)initiatives based on CDM widely applied,how to reschedule these disrupted flights of different airlines integra...The airspace congestion is becoming more and more severe.Although there are traffic flow management(TFM)initiatives based on CDM widely applied,how to reschedule these disrupted flights of different airlines integrating TFM initiatives and allocate the limited airspace resources to these airlines equitably and efficiently is still a problem.The air traffic management(ATM)authority aims to minimizing the systemic costs of congested airspaces.And the airlines are self-interested and profit-oriented.Being incorporated into the collaborative decision making(CDM)process,the airlines can influence the rescheduling decisions to profit themselves.The airlines maybe hide the flight information that is disadvantageous to them,but is necessary to the optimal system decision.To realize the coincidence goal between the ATM authority and airlines for the efficient,and equitable allocation of airspace resources,this paper provides an auction-based market method to solve the congestion airspace problem under the pre-tactic and tactic stage of air traffic flow management.Through a simulation experiment,the rationing results show that the auction method can decrease the total delay costs of flights in the congested airspace compared with both the first schedule first service(FSFS)tactic and the ration by schedule(RBS)tactic.Finally,the analysis results indicate that if reallocate the charges from the auction to the airlines according to the proportion of their disrupted flights,the auction mechanism can allocate the airspace resource in economy equitably and decrease the delay losses of the airlines compared with the results of the FSFS tactic.展开更多
This paper addresses a multi-agent scheduling problem with uniform parallel machines owned by a resource agent and competing jobs with dynamic arrival times that belong to different consumer agents.All agents are self...This paper addresses a multi-agent scheduling problem with uniform parallel machines owned by a resource agent and competing jobs with dynamic arrival times that belong to different consumer agents.All agents are self-interested and rational with the aim of maximizing their own objectives,resulting in intense resource competition among consumer agents and strategic behaviors of unwillingness to disclose private information.Within the context,a centralized scheduling approach is unfeasible,and a decentralized approach is considered to deal with the targeted problem.This study aims to generate a stable and collaborative solution with high social welfare while simultaneously accommodating consumer agents’preferences under incomplete information.For this purpose,a dynamic iterative auction-based approach based on a decentralized decision-making procedure is developed.In the proposed approach,a dynamic auction procedure is established for dynamic jobs participating in a realtime auction,and a straightforward and easy-to-implement bidding strategy without price is presented to reduce the complexity of bid determination.In addition,an adaptive Hungarian algorithm is applied to solve the winner determination problem efficiently.A theoretical analysis is conducted to prove that the proposed approach is individually rational and that the myopic bidding strategy is a weakly dominant strategy for consumer agents submitting bids.Extensive computational experiments demonstrate that the developed approach achieves high-quality solutions and exhibits considerable stability on largescale problems with numerous consumer agents and jobs.A further multi-agent scheduling problem considering multiple resource agents will be studied in future work.展开更多
In a SIPV model, when the commission proportion is not certain, but related with bargain price, generally, it is a linear function of the bargain price, this paper gives bidders' equilibrium bidding strategies in the...In a SIPV model, when the commission proportion is not certain, but related with bargain price, generally, it is a linear function of the bargain price, this paper gives bidders' equilibrium bidding strategies in the first-and secondprice auctions. We find that the equilibrium strategies in second-price auction are dominant strategies. For seller or auction house, whether the fixed proportion or the unfixed proportion is good is not only related with constant item and the linear coefficient of the linear function, the size of the fixed commission proportion, but also related with the value of the item auctioned. So, in the practical auctions, the seller and the auction house negotiated with each other to decide the commission rules for their own advantage.展开更多
I present a new protocol for three-party quantum secure direct communication (QSDC) with a set of ordered M Einstein-Podolsky-Rosen (EPR) pairs. In the scheme, by performing two unitary operations and Bell state m...I present a new protocol for three-party quantum secure direct communication (QSDC) with a set of ordered M Einstein-Podolsky-Rosen (EPR) pairs. In the scheme, by performing two unitary operations and Bell state measurements, it is shown that the three legitimate parties can exchange their respective secret message simultaneously. Then I modify it for an experimentally feasible and secure quantum sealed-bid auction (QSBD) protocol. Furthermore, I also analyze th^ecurity of the protocol, and the scheme is proven to be secure against the intercept-and-resend attack, the disturbancb attack and the entangled-and-measure attack.展开更多
Cognitive radio(CR) technology is considered to be an effective solution to allocate spectrum resources,whereas the primary users of a network do not fully utilize available frequency bands.Spectrum auction framewor...Cognitive radio(CR) technology is considered to be an effective solution to allocate spectrum resources,whereas the primary users of a network do not fully utilize available frequency bands.Spectrum auction framework has been recognized as an effective way to achieve dynamic spectrum access.From the perspective of spectrum auction,multi-band multi-user auction provides a new challenge for spectrum management.This paper proposes an auction framework based on location information for multi-band multi-user spectrum allocation.The performance of the proposed framework is compared with that of traditional auction framework based on a binary interference model as a benchmark.Simulation results show that primary users will obtain more total system revenue by selling their idle frequency bands to secondary users and the spectrum utilization of the proposed framework is more effective and fairer.展开更多
A joint resource allocation algorithm based on parallel auction(JRAPA)is proposed for mobile edge computing(MEC).In JRAPA,the joint allocation of wireless and cloud resources is modeled as an auction process,aiming at...A joint resource allocation algorithm based on parallel auction(JRAPA)is proposed for mobile edge computing(MEC).In JRAPA,the joint allocation of wireless and cloud resources is modeled as an auction process,aiming at maximizing the utilities of service providers(SPs)and satisfying the delay requirements of mobile terminals(MTs).The auction process consists of the bidding submission,winner determination and pricing stages.At the bidding submission stage,the MTs take available resources from SPs and distance factors into account to decide the bidding priority,thereby reducing the processing delay and improving the successful trades rate.A resource constrained utility ranking(RCUR)algorithm is put forward at the winner determination stage to determine the winners and losers so as to maximize the utilities of SPs.At the pricing stage,the sealed second-price rule is adopted to ensure the independence between the price paid by the buyer and its own bid.The simulation results show that the proposed JRAPA algorithm outperforms other existing algorithms in terms of the convergence rate and the number of successful trades rate.Moreover,it can not only achieve a larger average utility of SPs but also significantly reduce the average delay of MTs.展开更多
With the development of communication 5G networks and technologies,spectrum resources are increasingly scarce.The scarcity of the spectrum resource makes market-driven spectrum auction become an important means of spe...With the development of communication 5G networks and technologies,spectrum resources are increasingly scarce.The scarcity of the spectrum resource makes market-driven spectrum auction become an important means of spectrum allocation,and due to the complexity of the network environment,the security of spectrum auctions can not be ignored.Most existing secure spectrum auction schemes introduce a semi-honest agent to complete spectrum auction.However,the hypothetical semi-honest model does not guarantee the security of spectnim auction in the actual application scenario,which may lead to potential security threats:the agent may reveal the privacy of bidders,agent or auctioneer may collude with the bidder to manipulate the spectrum auction,and so on.In this paper,a secure spectrum auction scheme without a trusted party is proposed based on the smart contract technology,and the smart contract written into the blockchain replaces the traditional semi-honest agent to cooperate with the auctioneer server to complete the auction.In order to ensure the security of our scheme,a secure spectrum auction protocol is designed,in which the Software Guard Extensions(SGX)technology and Paillier cryptosystem are used to protect the privacy of bidders.Public verification is provided in our protocol by using extensive Pedersen commitment,which prevents the auctioneer server and the bidder from colluding with each other and verifies group bid sum values.Finally,the security analysis is given to propose several types of attacks that can be defended.Besides,theoretical analysis and simulation experiments of our protocol are also provided.展开更多
基金supported by the National Natural Science Foundation of China(No.72104075,71850012,72274056)the National Social Science Fund of China(No.19AZD014,21&ZD125)+2 种基金the Major Special Projects of the Department of Science and Technology of Hunan province(No.2018GK1020)the Natural Science Foundation of Hunan Province(No.2022JJ40106)the China Association for Science and Technology(No.20220615ZZ07110402),and Hunan University Youth Talent Program.
文摘Although blockchain technology has received a significant amount of cutting-edge research on constructing a novel carbon trade market in theory,there is little research on using blockchain in carbon emission trading schemes(ETS).This study intends to address existing gaps in the literature by creating and simulating an ETS system based on blockchain technology.Using the ciphertext-policy attributed-based encryption algorithm and the Fabric network to build a platform may optimize the amount of data available while maintaining privacy security.Considering the augmentation of information interaction during the auction process brought about by blockchain,the learning behavior of bidding firms is introduced to investigate the impact of blockchain on ETS auction.In particular,implementing smart contracts can provide a swift and automatic settlement.The simulation results of the proposed system demonstrate the following:(1)fine-grained access is possible with a second delay;(2)the average annual compliance levels increase by 2%when bidders’learning behavior is considered;and(3)the blockchain network can process more than 350 reading operations or 7 writing operations in a second.Novel cooperative management of an ETS platform based on blockchain is proposed.The data access control policy based on CP-ABE is used to solve the contradiction between data privacy on the firm chain and government supervision.A learned auction strategy is proposed to suit the enhancement of information interaction caused by blockchain technology.This study provides a new method for climate change policymakers to consider the blockchain application of the carbon market.
基金National Natural Science Foundation of China(62173066)Open Project of Sichuan Provincial Key Laboratory of Intelligent Terminal Co-built by Province and City(SCITLAB-1014)。
文摘Sealed-bid auctions are a vital transaction tool in the e-commerce field.Traditional centralized auction schemes typically result in severe threats to data integrity,information transparency,and traceability owing to their excessive reliance on third parties,and blockchain-based auction schemes generally suffer from high storage costs and are deficient in functional and architectural design.To solve these problems,this study presents a sealed-bid auction scheme that removes the third-party based on an Ethereum smart contract,ensuring data integrity,openness,and transparency in the execution process.The commitment mechanism and distributed storage system help to significantly reduce the user’s storage cost and protect the privacy of user bids.For the functional design,this study introduces a fulltext-retrieval and dispute-processing module for commodities,which reduces the defects existing in the functional module design of existing auction systems.Furthermore,a prototype auction system on the Ethereum test chain is built to validate the proposed scheme.Experiments show that compared with traditional storage methods,indirect storage based on a distributed storage system of texts and images can reduce the storage cost by at least 50%while ensuring data integrity.Finally,the gas cost at each stage of the auction scheme and the time required for the full-text retrieval of products are recorded to evaluate the scheme performance and analyze the test results.
文摘In this era of digital domination,it is fit to say that individuals are more inclined towards viewership on online platforms due to the wide variety and the scope of individual preferences it provides.In the past few years,there has been a massive growth in the popularity of Over-The-Top platforms,with an increasing number of consumers adapting to them.The Covid-19 pandemic has also caused the proliferation of these services as people are restricted to their homes.Consumers are often in a dilemma about which subscription plan to choose,and this iswhere a recommendation systemmakes their task easy.The Subscription recommendation system allows potential users to pick the most suitable and convenient plan for their daily consumption from diverse OTT platforms.The economic equilibrium behind allocating these resources follows a unique voting and bidding system propped by us in this paper.The systemis dependent on two types of individuals,type 1 seeking the recommendation plan,and type 2 suggesting it.In our study,the system collaborates with the latterwho participate in voting and invest/bid in the available options,keeping in mind the user preferences.This architecture runs on an interface where the candidates can login to participate at their convenience.As a result,selective participants are awarded monetary gains considering the rules of the suggested mechanism,and the most voted subscription plan gets recommended to the user.
基金supported by Grants No.402/07/0166No.P402/10/0197 from the Grant Agency of Czech Republic.
文摘Auctions are important market mechanisms for the allocation of goods and services. Combinatorial auctions are those auctions in which buyers can place bids on combinations of items. Combinatorial auctions have many applications. The paper presents the CRAB software system. CRAB is a non-commercial software system for generating, solving, and testing of combinatorial auction problems. The system solves problems by Balas’ method or by the primal-dual algo-rithm. CRAB is implemented in Ruby and it is distributed as the file crab.rb. The system is freely available on web pag-es for all interested
文摘With the development of Big Data and the Internet of Things(IoT),the data value is more significant in both academia and industry.Trading can achieve maximal data value and prepare data for smart city services.Due to data's unique characteristics,such as dispersion,heterogeneity and distributed storage,an unbiased platform is necessary for the data trading market with rational trading entities.Meanwhile,there are multiple buyers and sellers in a practical data trading market,and this makes it challenging to maximize social welfare.To solve these problems,this paper proposes a Social-Welfare-Oriented Many-to-Many Trading Mechanism(SOMTM),which integrates three entities,a trading process and an algorithm named Many-to-Many Trading Algorithm(MMTA).Based on the market scale,market dominated-side and market fixed-side,simulations verify the convergency,economic properties and efficiency of SOMTM.
基金supported by National Natural Science Foundation of China under grants 61901070,61801065,61771082,61871062,U20A20157in part by the Science and Technology Research Program of Chongqing Municipal Education Commission under grants KJQN202000603,KJQN201900611+1 种基金in part by the Natural Science Foundation of Chongqing under grant cstc2020jcyjzdxmX0024part by University Innovation Research Group of Chongqing under grant CXQT20017.
文摘Offloading Mobile Devices(MDs)computation tasks to Edge Nodes(ENs)is a promising solution to overcome computation and energy resources limitations of MDs.However,there exists an unreasonable profit allocation problem between MDs and ENs caused by the excessive concern on MD profit.In this paper,we propose an auction-based computation offloading algorithm,inspiring ENs to provide high-quality service by maximizing the profit of ENs.Firstly,a novel cooperation auction framework is designed to avoid overall profit damage of ENs,which is derived from the high computation delay at the overloaded ENs.Thereafter,the bidding willingness of each MD in every round of auction is determined to ensure MD rationality.Furthermore,we put forward a payment rule for the pre-selected winner to effectively guarantee auction truthfulness.Finally,the auction-based profit maximization offloading algorithm is proposed,and the MD is allowed to occupy the computation and spectrum resources of the EN for offloading if it wins the auction.Numerical results verify the performance of the proposed algorithm.Compared with the VA algorithm,the ENs profit is increased by 23.8%,and the task discard ratio is decreased by 7.5%.
文摘利用清洁能源发电富余电力电解水制氢,绿色氢能实现了生产源头的二氧化碳零排放,在全球能源转型中扮演着重要角色。针对绿色氢能证书市场机制不健全等问题,该文提出一种考虑绿色氢能证书组合双向拍卖和水电制氢的综合能源系统优化运行方法。首先,为解决园区内绿色氢能证书价格和数量匹配不均衡的问题,提出绿色氢能证书组合双向拍卖(combinatorial double auction,CDA)交易机制竞价模型;其次,建立含水电制氢的综合能源系统优化模型,并将绿色氢能证书组合双向拍卖机制引入其中;最后,以某省含水电制氢的综合能源系统为例进行仿真分析,结果表明所提模型不仅能有效提高综合能源系统(integrated energy system,IES)的运行经济性,也能提升可再生能源的消纳量。
基金Supported by the National High Technology Research and Development Program of China("863"Program)(20060AA12A105)the Chinese Airspace Management Commission Researching Program(GKG200802006)~~
文摘The airspace congestion is becoming more and more severe.Although there are traffic flow management(TFM)initiatives based on CDM widely applied,how to reschedule these disrupted flights of different airlines integrating TFM initiatives and allocate the limited airspace resources to these airlines equitably and efficiently is still a problem.The air traffic management(ATM)authority aims to minimizing the systemic costs of congested airspaces.And the airlines are self-interested and profit-oriented.Being incorporated into the collaborative decision making(CDM)process,the airlines can influence the rescheduling decisions to profit themselves.The airlines maybe hide the flight information that is disadvantageous to them,but is necessary to the optimal system decision.To realize the coincidence goal between the ATM authority and airlines for the efficient,and equitable allocation of airspace resources,this paper provides an auction-based market method to solve the congestion airspace problem under the pre-tactic and tactic stage of air traffic flow management.Through a simulation experiment,the rationing results show that the auction method can decrease the total delay costs of flights in the congested airspace compared with both the first schedule first service(FSFS)tactic and the ration by schedule(RBS)tactic.Finally,the analysis results indicate that if reallocate the charges from the auction to the airlines according to the proportion of their disrupted flights,the auction mechanism can allocate the airspace resource in economy equitably and decrease the delay losses of the airlines compared with the results of the FSFS tactic.
基金supported by the National Natural Science Foundation of China(51975482)the China Scholarship Council.
文摘This paper addresses a multi-agent scheduling problem with uniform parallel machines owned by a resource agent and competing jobs with dynamic arrival times that belong to different consumer agents.All agents are self-interested and rational with the aim of maximizing their own objectives,resulting in intense resource competition among consumer agents and strategic behaviors of unwillingness to disclose private information.Within the context,a centralized scheduling approach is unfeasible,and a decentralized approach is considered to deal with the targeted problem.This study aims to generate a stable and collaborative solution with high social welfare while simultaneously accommodating consumer agents’preferences under incomplete information.For this purpose,a dynamic iterative auction-based approach based on a decentralized decision-making procedure is developed.In the proposed approach,a dynamic auction procedure is established for dynamic jobs participating in a realtime auction,and a straightforward and easy-to-implement bidding strategy without price is presented to reduce the complexity of bid determination.In addition,an adaptive Hungarian algorithm is applied to solve the winner determination problem efficiently.A theoretical analysis is conducted to prove that the proposed approach is individually rational and that the myopic bidding strategy is a weakly dominant strategy for consumer agents submitting bids.Extensive computational experiments demonstrate that the developed approach achieves high-quality solutions and exhibits considerable stability on largescale problems with numerous consumer agents and jobs.A further multi-agent scheduling problem considering multiple resource agents will be studied in future work.
基金Supported by the National Natural Science Foun-dation of China (70071012)
文摘In a SIPV model, when the commission proportion is not certain, but related with bargain price, generally, it is a linear function of the bargain price, this paper gives bidders' equilibrium bidding strategies in the first-and secondprice auctions. We find that the equilibrium strategies in second-price auction are dominant strategies. For seller or auction house, whether the fixed proportion or the unfixed proportion is good is not only related with constant item and the linear coefficient of the linear function, the size of the fixed commission proportion, but also related with the value of the item auctioned. So, in the practical auctions, the seller and the auction house negotiated with each other to decide the commission rules for their own advantage.
基金Supported by the 211 Project of Anhui University under Grant No.2009QN028B
文摘I present a new protocol for three-party quantum secure direct communication (QSDC) with a set of ordered M Einstein-Podolsky-Rosen (EPR) pairs. In the scheme, by performing two unitary operations and Bell state measurements, it is shown that the three legitimate parties can exchange their respective secret message simultaneously. Then I modify it for an experimentally feasible and secure quantum sealed-bid auction (QSBD) protocol. Furthermore, I also analyze th^ecurity of the protocol, and the scheme is proven to be secure against the intercept-and-resend attack, the disturbancb attack and the entangled-and-measure attack.
基金supported by the Beijing Natural Science Foundation of China (4102050)
文摘Cognitive radio(CR) technology is considered to be an effective solution to allocate spectrum resources,whereas the primary users of a network do not fully utilize available frequency bands.Spectrum auction framework has been recognized as an effective way to achieve dynamic spectrum access.From the perspective of spectrum auction,multi-band multi-user auction provides a new challenge for spectrum management.This paper proposes an auction framework based on location information for multi-band multi-user spectrum allocation.The performance of the proposed framework is compared with that of traditional auction framework based on a binary interference model as a benchmark.Simulation results show that primary users will obtain more total system revenue by selling their idle frequency bands to secondary users and the spectrum utilization of the proposed framework is more effective and fairer.
基金The National Natural Science Foundation of China(No.61741102,61471164,61601122)
文摘A joint resource allocation algorithm based on parallel auction(JRAPA)is proposed for mobile edge computing(MEC).In JRAPA,the joint allocation of wireless and cloud resources is modeled as an auction process,aiming at maximizing the utilities of service providers(SPs)and satisfying the delay requirements of mobile terminals(MTs).The auction process consists of the bidding submission,winner determination and pricing stages.At the bidding submission stage,the MTs take available resources from SPs and distance factors into account to decide the bidding priority,thereby reducing the processing delay and improving the successful trades rate.A resource constrained utility ranking(RCUR)algorithm is put forward at the winner determination stage to determine the winners and losers so as to maximize the utilities of SPs.At the pricing stage,the sealed second-price rule is adopted to ensure the independence between the price paid by the buyer and its own bid.The simulation results show that the proposed JRAPA algorithm outperforms other existing algorithms in terms of the convergence rate and the number of successful trades rate.Moreover,it can not only achieve a larger average utility of SPs but also significantly reduce the average delay of MTs.
基金This work was supported by the National Natural Science Foundation of China(Nos.61601107,U1708262 and 61872449)China Postdoctoral Science Foundation(No.2019M653568)The Fundamental Research Funds for the Central Universities(No.Nl 72304023).
文摘With the development of communication 5G networks and technologies,spectrum resources are increasingly scarce.The scarcity of the spectrum resource makes market-driven spectrum auction become an important means of spectrum allocation,and due to the complexity of the network environment,the security of spectrum auctions can not be ignored.Most existing secure spectrum auction schemes introduce a semi-honest agent to complete spectrum auction.However,the hypothetical semi-honest model does not guarantee the security of spectnim auction in the actual application scenario,which may lead to potential security threats:the agent may reveal the privacy of bidders,agent or auctioneer may collude with the bidder to manipulate the spectrum auction,and so on.In this paper,a secure spectrum auction scheme without a trusted party is proposed based on the smart contract technology,and the smart contract written into the blockchain replaces the traditional semi-honest agent to cooperate with the auctioneer server to complete the auction.In order to ensure the security of our scheme,a secure spectrum auction protocol is designed,in which the Software Guard Extensions(SGX)technology and Paillier cryptosystem are used to protect the privacy of bidders.Public verification is provided in our protocol by using extensive Pedersen commitment,which prevents the auctioneer server and the bidder from colluding with each other and verifies group bid sum values.Finally,the security analysis is given to propose several types of attacks that can be defended.Besides,theoretical analysis and simulation experiments of our protocol are also provided.