期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Multi-Modality and Feature Fusion-Based COVID-19 Detection Through Long Short-Term Memory
1
作者 Noureen Fatima Rashid Jahangir +3 位作者 Ghulam Mujtaba Adnan Akhunzada Zahid Hussain Shaikh Faiza Qureshi 《Computers, Materials & Continua》 SCIE EI 2022年第9期4357-4374,共18页
The Coronavirus Disease 2019(COVID-19)pandemic poses the worldwide challenges surpassing the boundaries of country,religion,race,and economy.The current benchmark method for the detection of COVID-19 is the reverse tr... The Coronavirus Disease 2019(COVID-19)pandemic poses the worldwide challenges surpassing the boundaries of country,religion,race,and economy.The current benchmark method for the detection of COVID-19 is the reverse transcription polymerase chain reaction(RT-PCR)testing.Nevertheless,this testing method is accurate enough for the diagnosis of COVID-19.However,it is time-consuming,expensive,expert-dependent,and violates social distancing.In this paper,this research proposed an effective multimodality-based and feature fusion-based(MMFF)COVID-19 detection technique through deep neural networks.In multi-modality,we have utilized the cough samples,breathe samples and sound samples of healthy as well as COVID-19 patients from publicly available COSWARA dataset.Extensive set of experimental analyses were performed to evaluate the performance of our proposed approach.Several useful features were extracted from the aforementioned modalities that were then fed as an input to long short-term memory recurrent neural network algorithms for the classification purpose.Extensive set of experimental analyses were performed to evaluate the performance of our proposed approach.The experimental results showed that our proposed approach outperformed compared to four baseline approaches published recently.We believe that our proposed technique will assists potential users to diagnose the COVID-19 without the intervention of any expert in minimum amount of time. 展开更多
关键词 Covid-19 detection long short-term memory feature fusion deep learning audio classification
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部