Visual media have dominated sensory communications for decades,and the resulting“visual hegemony”leads to the call for the“auditory return”in order to achieve a holistic balance in cultural acceptance.Romance of t...Visual media have dominated sensory communications for decades,and the resulting“visual hegemony”leads to the call for the“auditory return”in order to achieve a holistic balance in cultural acceptance.Romance of the Three Kingdoms,a classic literary work in China,has received significant attention and promotion from leading audio platforms.However,the commercialization of digital audio publishing faces unprecedented challenges due to the mismatch between the dissemination of long-form content on digital audio platforms and the current trend of short and fast information reception.Drawing on the Business Model Canvas Theory and taking Romance of the Three Kingdoms as the main focus of analysis,this paper argues that the construction of a business model for the audio publishing of classical books should start from three aspects:the user evaluation of digital audio platforms,the establishment of value propositions based on the“creative transformation and innovative development”principle,and the improvement of the audio publishing infrastructure to ensure the healthy operation and development of the digital audio platforms and consequently improve their current state of development and expand the boundaries of cultural heritage.展开更多
Background Considerable research has been conducted in the areas of audio-driven virtual character gestures and facial animation with some degree of success.However,few methods exist for generating full-body animation...Background Considerable research has been conducted in the areas of audio-driven virtual character gestures and facial animation with some degree of success.However,few methods exist for generating full-body animations,and the portability of virtual character gestures and facial animations has not received sufficient attention.Methods Therefore,we propose a deep-learning-based audio-to-animation-and-blendshape(Audio2AB)network that generates gesture animations and ARK it's 52 facial expression parameter blendshape weights based on audio,audio-corresponding text,emotion labels,and semantic relevance labels to generate parametric data for full-body animations.This parameterization method can be used to drive full-body animations of virtual characters and improve their portability.In the experiment,we first downsampled the gesture and facial data to achieve the same temporal resolution for the input,output,and facial data.The Audio2AB network then encoded the audio,audio-corresponding text,emotion labels,and semantic relevance labels,and then fused the text,emotion labels,and semantic relevance labels into the audio to obtain better audio features.Finally,we established links between the body,gestures,and facial decoders and generated the corresponding animation sequences through our proposed GAN-GF loss function.Results By using audio,audio-corresponding text,and emotional and semantic relevance labels as input,the trained Audio2AB network could generate gesture animation data containing blendshape weights.Therefore,different 3D virtual character animations could be created through parameterization.Conclusions The experimental results showed that the proposed method could generate significant gestures and facial animations.展开更多
The use of interactive audience software,such as audience response systems(ARS),in medical education has become increasingly popular in recent years.This technology allows instructors to engage students in real time,e...The use of interactive audience software,such as audience response systems(ARS),in medical education has become increasingly popular in recent years.This technology allows instructors to engage students in real time,encouraging active participation and promoting effective learning.The benefits of interactive audience software in medical education include increased student engagement,promotion of active learning,and enhanced learning outcomes.However,there are also several challenges to its implementation,including technical difficulties,careful planning and preparation,over-reliance on technology,and ethical concerns related to privacy and data security.The cost of implementing interactive audience software may also be a barrier for some institutions.This paper specifically reviews six interactive software platforms,including Socrative,Quizizz,Pear Deck,Slido,Wooclap and ClassPoint.These platforms allow for real-time assessment of student understanding,feedback,and participation.They also enable instructors to adjust their teaching strategies based on student responses and feedback.Overall,interactive audience software has shown great potential to enhance learning and engagement in medical education.It is important for instructors to carefully consider the benefits and challenges of its implementation.While the cost of implementing interactive audience software may be a barrier for some institutions,there are free and low-cost options available.展开更多
Software Defined Networking(SDN)is programmable by separation of forwarding control through the centralization of the controller.The controller plays the role of the‘brain’that dictates the intelligent part of SDN t...Software Defined Networking(SDN)is programmable by separation of forwarding control through the centralization of the controller.The controller plays the role of the‘brain’that dictates the intelligent part of SDN technology.Various versions of SDN controllers exist as a response to the diverse demands and functions expected of them.There are several SDN controllers available in the open market besides a large number of commercial controllers;some are developed tomeet carrier-grade service levels and one of the recent trends in open-source SDN controllers is the Open Network Operating System(ONOS).This paper presents a comparative study between open source SDN controllers,which are known as Network Controller Platform(NOX),Python-based Network Controller(POX),component-based SDN framework(Ryu),Java-based OpenFlow controller(Floodlight),OpenDayLight(ODL)and ONOS.The discussion is further extended into ONOS architecture,as well as,the evolution of ONOS controllers.This article will review use cases based on ONOS controllers in several application deployments.Moreover,the opportunities and challenges of open source SDN controllers will be discussed,exploring carriergrade ONOS for future real-world deployments,ONOS unique features and identifying the suitable choice of SDN controller for service providers.In addition,we attempt to provide answers to several critical questions relating to the implications of the open-source nature of SDN controllers regarding vendor lock-in,interoperability,and standards compliance,Similarly,real-world use cases of organizations using open-source SDN are highlighted and how the open-source community contributes to the development of SDN controllers.Furthermore,challenges faced by open-source projects,and considerations when choosing an open-source SDN controller are underscored.Then the role of Artificial Intelligence(AI)and Machine Learning(ML)in the evolution of open-source SDN controllers in light of recent research is indicated.In addition,the challenges and limitations associated with deploying open-source SDN controllers in production networks,how can they be mitigated,and finally how opensource SDN controllers handle network security and ensure that network configurations and policies are robust and resilient are presented.Potential opportunities and challenges for future Open SDN deployment are outlined to conclude the article.展开更多
Software testing is a critical phase due to misconceptions about ambiguities in the requirements during specification,which affect the testing process.Therefore,it is difficult to identify all faults in software.As re...Software testing is a critical phase due to misconceptions about ambiguities in the requirements during specification,which affect the testing process.Therefore,it is difficult to identify all faults in software.As requirement changes continuously,it increases the irrelevancy and redundancy during testing.Due to these challenges;fault detection capability decreases and there arises a need to improve the testing process,which is based on changes in requirements specification.In this research,we have developed a model to resolve testing challenges through requirement prioritization and prediction in an agile-based environment.The research objective is to identify the most relevant and meaningful requirements through semantic analysis for correct change analysis.Then compute the similarity of requirements through case-based reasoning,which predicted the requirements for reuse and restricted to error-based requirements.Afterward,the apriori algorithm mapped out requirement frequency to select relevant test cases based on frequently reused or not reused test cases to increase the fault detection rate.Furthermore,the proposed model was evaluated by conducting experiments.The results showed that requirement redundancy and irrelevancy improved due to semantic analysis,which correctly predicted the requirements,increasing the fault detection rate and resulting in high user satisfaction.The predicted requirements are mapped into test cases,increasing the fault detection rate after changes to achieve higher user satisfaction.Therefore,the model improves the redundancy and irrelevancy of requirements by more than 90%compared to other clustering methods and the analytical hierarchical process,achieving an 80%fault detection rate at an earlier stage.Hence,it provides guidelines for practitioners and researchers in the modern era.In the future,we will provide the working prototype of this model for proof of concept.展开更多
Software Development Life Cycle (SDLC) is one of the major ingredients for the development of efficient software systems within a time frame and low-cost involvement. From the literature, it is evident that there are ...Software Development Life Cycle (SDLC) is one of the major ingredients for the development of efficient software systems within a time frame and low-cost involvement. From the literature, it is evident that there are various kinds of process models that are used by the software industries for the development of small, medium and long-term software projects, but many of them do not cover risk management. It is quite obvious that the improper selection of the software development process model leads to failure of the software products as it is time bound activity. In the present work, a new software development process model is proposed which covers the risks at any stage of the development of the software product. The model is named a Hemant-Vipin (HV) process model and may be helpful for the software industries for development of the efficient software products and timely delivery at the end of the client. The efficiency of the HV process model is observed by considering various kinds of factors like requirement clarity, user feedback, change agility, predictability, risk identification, practical implementation, customer satisfaction, incremental development, use of ready-made components, quick design, resource organization and many more and found through a case study that the presented approach covers many of parameters in comparison of the existing process models. .展开更多
Accurate software cost estimation in Global Software Development(GSD)remains challenging due to reliance on historical data and expert judgments.Traditional models,such as the Constructive Cost Model(COCOMO II),rely h...Accurate software cost estimation in Global Software Development(GSD)remains challenging due to reliance on historical data and expert judgments.Traditional models,such as the Constructive Cost Model(COCOMO II),rely heavily on historical and accurate data.In addition,expert judgment is required to set many input parameters,which can introduce subjectivity and variability in the estimation process.Consequently,there is a need to improve the current GSD models to mitigate reliance on historical data,subjectivity in expert judgment,inadequate consideration of GSD-based cost drivers and limited integration of modern technologies with cost overruns.This study introduces a novel hybrid model that synergizes the COCOMO II with Artificial Neural Networks(ANN)to address these challenges.The proposed hybrid model integrates additional GSD-based cost drivers identified through a systematic literature review and further vetted by industry experts.This article compares the effectiveness of the proposedmodelwith state-of-the-artmachine learning-basedmodels for software cost estimation.Evaluating the NASA 93 dataset by adopting twenty-six GSD-based cost drivers reveals that our hybrid model achieves superior accuracy,outperforming existing state-of-the-artmodels.The findings indicate the potential of combining COCOMO II,ANN,and additional GSD-based cost drivers to transform cost estimation in GSD.展开更多
Purpose: To clarify the effectiveness of 3-D delivery animation software for the mother’s and husband’s satisfaction with delivery. Subjects and Method: We independently developed a software application used to disp...Purpose: To clarify the effectiveness of 3-D delivery animation software for the mother’s and husband’s satisfaction with delivery. Subjects and Method: We independently developed a software application used to display the pelvic region and explain the labor process. The study involved a collaboration with hospital staff who recruited 18 primiparous and 18 multiparous mothers who were hospitalized for delivery at Facility A. The midwife explained the process of delivery using the “Delivery Animation Software”. A self-administered, anonymous questionnaire was distributed and analyzed separately for primiparous and multiparous mothers and their husbands. Results: 1) For both primiparous and multiparous couples, both mothers and their husbands gained a significantly higher level of understanding after delivery than during pregnancy. 2) The Self-Evaluation Scale for Experience of Delivery results were as follows: “I did my best for the baby even if it was painful” was selected more often for “birth coping skills”;“reliable medical staff” was selected more often for “physiological birth process”;“the birth progressed as I expected” was selected frequently by primiparous mothers;and “the birth progressed smoothly” was selected often by multiparous mothers. 3) In terms of husbands’ satisfaction with the delivery, “I was satisfied with the delivery”, “I was given an easy-to-understand explanation”, and “They explained the process to me” was selected of primiparous and multiparous fathers. 4) All primiparous and multiparous mothers positively evaluated whether the delivery animation was helpful in understanding the process of delivery. Conclusion: The delivery animation was effective in improving the understanding and satisfaction of both the mothers and their husbands.展开更多
The Internet of Things(IoT)has characteristics such as node mobility,node heterogeneity,link heterogeneity,and topology heterogeneity.In the face of the IoT characteristics and the explosive growth of IoT nodes,which ...The Internet of Things(IoT)has characteristics such as node mobility,node heterogeneity,link heterogeneity,and topology heterogeneity.In the face of the IoT characteristics and the explosive growth of IoT nodes,which brings about large-scale data processing requirements,edge computing architecture has become an emerging network architecture to support IoT applications due to its ability to provide powerful computing capabilities and good service functions.However,the defense mechanism of Edge Computing-enabled IoT Nodes(ECIoTNs)is still weak due to their limited resources,so that they are susceptible to malicious software spread,which can compromise data confidentiality and network service availability.Facing this situation,we put forward an epidemiology-based susceptible-curb-infectious-removed-dead(SCIRD)model.Then,we analyze the dynamics of ECIoTNs with different infection levels under different initial conditions to obtain the dynamic differential equations.Additionally,we establish the presence of equilibrium states in the SCIRD model.Furthermore,we conduct an analysis of the model’s stability and examine the conditions under which malicious software will either spread or disappear within Edge Computing-enabled IoT(ECIoT)networks.Lastly,we validate the efficacy and superiority of the SCIRD model through MATLAB simulations.These research findings offer a theoretical foundation for suppressing the propagation of malicious software in ECIoT networks.The experimental results indicate that the theoretical SCIRD model has instructive significance,deeply revealing the principles of malicious software propagation in ECIoT networks.This study solves a challenging security problem of ECIoT networks by determining the malicious software propagation threshold,which lays the foundation for buildingmore secure and reliable ECIoT networks.展开更多
This study evaluates the development of a testing process for the automotive software domain, highlighting challenges stemming from the absence of adequate processes. The research demonstrates the application of Desig...This study evaluates the development of a testing process for the automotive software domain, highlighting challenges stemming from the absence of adequate processes. The research demonstrates the application of Design Science Research methodology in developing, an automotive software testing process—ProTSA, using six functional testing modules. Additionally, the study evaluates the benefits of implementing ProTSA in a specific Original Equipment Manufacturer (OEM) using an experimental single-case approach with industry professionals’ participation through a survey. The study concludes that combining testing techniques with effective communication and alignment is crucial for enhancing software quality. Furthermore, survey data indicates that implementing ProTSA leads to productivity gains by initiating tests early, resulting in time savings in the testing program and increased productivity for the testing team. Future work will explore implementing ProTSA in cybersecurity, over-the-air software updates, and autonomous vehicle testing processes. .展开更多
End-user computing empowers non-developers to manage data and applications, enhancing collaboration and efficiency. Spreadsheets, a prime example of end-user programming environments widely used in business for data a...End-user computing empowers non-developers to manage data and applications, enhancing collaboration and efficiency. Spreadsheets, a prime example of end-user programming environments widely used in business for data analysis. However, Excel functionalities have limits compared to dedicated programming languages. This paper addresses this gap by proposing a prototype for integrating Python’s capabilities into Excel through on-premises desktop to build custom spreadsheet functions with Python. This approach overcomes potential latency issues associated with cloud-based solutions. This prototype utilizes Excel-DNA and IronPython. Excel-DNA allows creating custom Python functions that seamlessly integrate with Excel’s calculation engine. IronPython enables the execution of these Python (CSFs) directly within Excel. C# and VSTO add-ins form the core components, facilitating communication between Python and Excel. This approach empowers users with a potentially open-ended set of Python (CSFs) for tasks like mathematical calculations, statistical analysis, and even predictive modeling, all within the familiar Excel interface. This prototype demonstrates smooth integration, allowing users to call Python (CSFs) just like standard Excel functions. This research contributes to enhancing spreadsheet capabilities for end-user programmers by leveraging Python’s power within Excel. Future research could explore expanding data analysis capabilities by expanding the (CSFs) functions for complex calculations, statistical analysis, data manipulation, and even external library integration. The possibility of integrating machine learning models through the (CSFs) functions within the familiar Excel environment.展开更多
Depression is a common mental health disorder.With current depression detection methods,specialized physicians often engage in conversations and physiological examinations based on standardized scales as auxiliary mea...Depression is a common mental health disorder.With current depression detection methods,specialized physicians often engage in conversations and physiological examinations based on standardized scales as auxiliary measures for depression assessment.Non-biological markers-typically classified as verbal or non-verbal and deemed crucial evaluation criteria for depression-have not been effectively utilized.Specialized physicians usually require extensive training and experience to capture changes in these features.Advancements in deep learning technology have provided technical support for capturing non-biological markers.Several researchers have proposed automatic depression estimation(ADE)systems based on sounds and videos to assist physicians in capturing these features and conducting depression screening.This article summarizes commonly used public datasets and recent research on audio-and video-based ADE based on three perspectives:Datasets,deficiencies in existing research,and future development directions.展开更多
The developed auxiliary software serves to simplify, standardize and facilitate the software loading of the structural organization of a complex technological system, as well as its further manipulation within the pro...The developed auxiliary software serves to simplify, standardize and facilitate the software loading of the structural organization of a complex technological system, as well as its further manipulation within the process of solving the considered technological system. Its help can be especially useful in the case of a complex structural organization of a technological system with a large number of different functional elements grouped into several technological subsystems. This paper presents the results of its application for a special complex technological system related to the reference steam block for the combined production of heat and electricity.展开更多
In recent years,the domain of machine translation has experienced remarkable growth,particularly with the emergence of neural machine translation,which has significantly enhanced both the accuracy and fluency of trans...In recent years,the domain of machine translation has experienced remarkable growth,particularly with the emergence of neural machine translation,which has significantly enhanced both the accuracy and fluency of translation.At the same time,AI also showed its tremendous advancement,with its capabilities now extending to assisting users in a multitude of tasks,including translation,garnering attention across various sectors.In this paper,the author selects representative sentences from both literary and scientific texts,and translates them using two translation software and two AI tools for comparison.The results show that all four translation tools are very efficient and can help with simple translation tasks.However,the accuracy of terminology needs to be improved,and it is difficult to make adjustments based on the characteristics of the target language.It is worth mentioning that one of the advantages of AI is its interactivity,which allows it to modify the translation according to the translator’s needs.展开更多
基金This study is a phased achievement of the“Research on Innovative Communication of Romance of the Three Kingdoms under Audio Empowerment”project(No.23ZGL16)funded by Zhuge Liang Research Center,a key research base of social sciences in Sichuan Province.
文摘Visual media have dominated sensory communications for decades,and the resulting“visual hegemony”leads to the call for the“auditory return”in order to achieve a holistic balance in cultural acceptance.Romance of the Three Kingdoms,a classic literary work in China,has received significant attention and promotion from leading audio platforms.However,the commercialization of digital audio publishing faces unprecedented challenges due to the mismatch between the dissemination of long-form content on digital audio platforms and the current trend of short and fast information reception.Drawing on the Business Model Canvas Theory and taking Romance of the Three Kingdoms as the main focus of analysis,this paper argues that the construction of a business model for the audio publishing of classical books should start from three aspects:the user evaluation of digital audio platforms,the establishment of value propositions based on the“creative transformation and innovative development”principle,and the improvement of the audio publishing infrastructure to ensure the healthy operation and development of the digital audio platforms and consequently improve their current state of development and expand the boundaries of cultural heritage.
基金Supported by the National Natural Science Foundation of China (62277014)the National Key Research and Development Program of China (2020YFC1523100)the Fundamental Research Funds for the Central Universities of China (PA2023GDSK0047)。
文摘Background Considerable research has been conducted in the areas of audio-driven virtual character gestures and facial animation with some degree of success.However,few methods exist for generating full-body animations,and the portability of virtual character gestures and facial animations has not received sufficient attention.Methods Therefore,we propose a deep-learning-based audio-to-animation-and-blendshape(Audio2AB)network that generates gesture animations and ARK it's 52 facial expression parameter blendshape weights based on audio,audio-corresponding text,emotion labels,and semantic relevance labels to generate parametric data for full-body animations.This parameterization method can be used to drive full-body animations of virtual characters and improve their portability.In the experiment,we first downsampled the gesture and facial data to achieve the same temporal resolution for the input,output,and facial data.The Audio2AB network then encoded the audio,audio-corresponding text,emotion labels,and semantic relevance labels,and then fused the text,emotion labels,and semantic relevance labels into the audio to obtain better audio features.Finally,we established links between the body,gestures,and facial decoders and generated the corresponding animation sequences through our proposed GAN-GF loss function.Results By using audio,audio-corresponding text,and emotional and semantic relevance labels as input,the trained Audio2AB network could generate gesture animation data containing blendshape weights.Therefore,different 3D virtual character animations could be created through parameterization.Conclusions The experimental results showed that the proposed method could generate significant gestures and facial animations.
文摘The use of interactive audience software,such as audience response systems(ARS),in medical education has become increasingly popular in recent years.This technology allows instructors to engage students in real time,encouraging active participation and promoting effective learning.The benefits of interactive audience software in medical education include increased student engagement,promotion of active learning,and enhanced learning outcomes.However,there are also several challenges to its implementation,including technical difficulties,careful planning and preparation,over-reliance on technology,and ethical concerns related to privacy and data security.The cost of implementing interactive audience software may also be a barrier for some institutions.This paper specifically reviews six interactive software platforms,including Socrative,Quizizz,Pear Deck,Slido,Wooclap and ClassPoint.These platforms allow for real-time assessment of student understanding,feedback,and participation.They also enable instructors to adjust their teaching strategies based on student responses and feedback.Overall,interactive audience software has shown great potential to enhance learning and engagement in medical education.It is important for instructors to carefully consider the benefits and challenges of its implementation.While the cost of implementing interactive audience software may be a barrier for some institutions,there are free and low-cost options available.
基金supported by UniversitiKebangsaan Malaysia,under Dana Impak Perdana 2.0.(Ref:DIP–2022–020).
文摘Software Defined Networking(SDN)is programmable by separation of forwarding control through the centralization of the controller.The controller plays the role of the‘brain’that dictates the intelligent part of SDN technology.Various versions of SDN controllers exist as a response to the diverse demands and functions expected of them.There are several SDN controllers available in the open market besides a large number of commercial controllers;some are developed tomeet carrier-grade service levels and one of the recent trends in open-source SDN controllers is the Open Network Operating System(ONOS).This paper presents a comparative study between open source SDN controllers,which are known as Network Controller Platform(NOX),Python-based Network Controller(POX),component-based SDN framework(Ryu),Java-based OpenFlow controller(Floodlight),OpenDayLight(ODL)and ONOS.The discussion is further extended into ONOS architecture,as well as,the evolution of ONOS controllers.This article will review use cases based on ONOS controllers in several application deployments.Moreover,the opportunities and challenges of open source SDN controllers will be discussed,exploring carriergrade ONOS for future real-world deployments,ONOS unique features and identifying the suitable choice of SDN controller for service providers.In addition,we attempt to provide answers to several critical questions relating to the implications of the open-source nature of SDN controllers regarding vendor lock-in,interoperability,and standards compliance,Similarly,real-world use cases of organizations using open-source SDN are highlighted and how the open-source community contributes to the development of SDN controllers.Furthermore,challenges faced by open-source projects,and considerations when choosing an open-source SDN controller are underscored.Then the role of Artificial Intelligence(AI)and Machine Learning(ML)in the evolution of open-source SDN controllers in light of recent research is indicated.In addition,the challenges and limitations associated with deploying open-source SDN controllers in production networks,how can they be mitigated,and finally how opensource SDN controllers handle network security and ensure that network configurations and policies are robust and resilient are presented.Potential opportunities and challenges for future Open SDN deployment are outlined to conclude the article.
文摘Software testing is a critical phase due to misconceptions about ambiguities in the requirements during specification,which affect the testing process.Therefore,it is difficult to identify all faults in software.As requirement changes continuously,it increases the irrelevancy and redundancy during testing.Due to these challenges;fault detection capability decreases and there arises a need to improve the testing process,which is based on changes in requirements specification.In this research,we have developed a model to resolve testing challenges through requirement prioritization and prediction in an agile-based environment.The research objective is to identify the most relevant and meaningful requirements through semantic analysis for correct change analysis.Then compute the similarity of requirements through case-based reasoning,which predicted the requirements for reuse and restricted to error-based requirements.Afterward,the apriori algorithm mapped out requirement frequency to select relevant test cases based on frequently reused or not reused test cases to increase the fault detection rate.Furthermore,the proposed model was evaluated by conducting experiments.The results showed that requirement redundancy and irrelevancy improved due to semantic analysis,which correctly predicted the requirements,increasing the fault detection rate and resulting in high user satisfaction.The predicted requirements are mapped into test cases,increasing the fault detection rate after changes to achieve higher user satisfaction.Therefore,the model improves the redundancy and irrelevancy of requirements by more than 90%compared to other clustering methods and the analytical hierarchical process,achieving an 80%fault detection rate at an earlier stage.Hence,it provides guidelines for practitioners and researchers in the modern era.In the future,we will provide the working prototype of this model for proof of concept.
文摘Software Development Life Cycle (SDLC) is one of the major ingredients for the development of efficient software systems within a time frame and low-cost involvement. From the literature, it is evident that there are various kinds of process models that are used by the software industries for the development of small, medium and long-term software projects, but many of them do not cover risk management. It is quite obvious that the improper selection of the software development process model leads to failure of the software products as it is time bound activity. In the present work, a new software development process model is proposed which covers the risks at any stage of the development of the software product. The model is named a Hemant-Vipin (HV) process model and may be helpful for the software industries for development of the efficient software products and timely delivery at the end of the client. The efficiency of the HV process model is observed by considering various kinds of factors like requirement clarity, user feedback, change agility, predictability, risk identification, practical implementation, customer satisfaction, incremental development, use of ready-made components, quick design, resource organization and many more and found through a case study that the presented approach covers many of parameters in comparison of the existing process models. .
文摘Accurate software cost estimation in Global Software Development(GSD)remains challenging due to reliance on historical data and expert judgments.Traditional models,such as the Constructive Cost Model(COCOMO II),rely heavily on historical and accurate data.In addition,expert judgment is required to set many input parameters,which can introduce subjectivity and variability in the estimation process.Consequently,there is a need to improve the current GSD models to mitigate reliance on historical data,subjectivity in expert judgment,inadequate consideration of GSD-based cost drivers and limited integration of modern technologies with cost overruns.This study introduces a novel hybrid model that synergizes the COCOMO II with Artificial Neural Networks(ANN)to address these challenges.The proposed hybrid model integrates additional GSD-based cost drivers identified through a systematic literature review and further vetted by industry experts.This article compares the effectiveness of the proposedmodelwith state-of-the-artmachine learning-basedmodels for software cost estimation.Evaluating the NASA 93 dataset by adopting twenty-six GSD-based cost drivers reveals that our hybrid model achieves superior accuracy,outperforming existing state-of-the-artmodels.The findings indicate the potential of combining COCOMO II,ANN,and additional GSD-based cost drivers to transform cost estimation in GSD.
文摘Purpose: To clarify the effectiveness of 3-D delivery animation software for the mother’s and husband’s satisfaction with delivery. Subjects and Method: We independently developed a software application used to display the pelvic region and explain the labor process. The study involved a collaboration with hospital staff who recruited 18 primiparous and 18 multiparous mothers who were hospitalized for delivery at Facility A. The midwife explained the process of delivery using the “Delivery Animation Software”. A self-administered, anonymous questionnaire was distributed and analyzed separately for primiparous and multiparous mothers and their husbands. Results: 1) For both primiparous and multiparous couples, both mothers and their husbands gained a significantly higher level of understanding after delivery than during pregnancy. 2) The Self-Evaluation Scale for Experience of Delivery results were as follows: “I did my best for the baby even if it was painful” was selected more often for “birth coping skills”;“reliable medical staff” was selected more often for “physiological birth process”;“the birth progressed as I expected” was selected frequently by primiparous mothers;and “the birth progressed smoothly” was selected often by multiparous mothers. 3) In terms of husbands’ satisfaction with the delivery, “I was satisfied with the delivery”, “I was given an easy-to-understand explanation”, and “They explained the process to me” was selected of primiparous and multiparous fathers. 4) All primiparous and multiparous mothers positively evaluated whether the delivery animation was helpful in understanding the process of delivery. Conclusion: The delivery animation was effective in improving the understanding and satisfaction of both the mothers and their husbands.
基金in part by National Undergraduate Innovation and Entrepreneurship Training Program under Grant No.202310347039Zhejiang Provincial Natural Science Foundation of China under Grant No.LZ22F020002Huzhou Science and Technology Planning Foundation under Grant No.2023GZ04.
文摘The Internet of Things(IoT)has characteristics such as node mobility,node heterogeneity,link heterogeneity,and topology heterogeneity.In the face of the IoT characteristics and the explosive growth of IoT nodes,which brings about large-scale data processing requirements,edge computing architecture has become an emerging network architecture to support IoT applications due to its ability to provide powerful computing capabilities and good service functions.However,the defense mechanism of Edge Computing-enabled IoT Nodes(ECIoTNs)is still weak due to their limited resources,so that they are susceptible to malicious software spread,which can compromise data confidentiality and network service availability.Facing this situation,we put forward an epidemiology-based susceptible-curb-infectious-removed-dead(SCIRD)model.Then,we analyze the dynamics of ECIoTNs with different infection levels under different initial conditions to obtain the dynamic differential equations.Additionally,we establish the presence of equilibrium states in the SCIRD model.Furthermore,we conduct an analysis of the model’s stability and examine the conditions under which malicious software will either spread or disappear within Edge Computing-enabled IoT(ECIoT)networks.Lastly,we validate the efficacy and superiority of the SCIRD model through MATLAB simulations.These research findings offer a theoretical foundation for suppressing the propagation of malicious software in ECIoT networks.The experimental results indicate that the theoretical SCIRD model has instructive significance,deeply revealing the principles of malicious software propagation in ECIoT networks.This study solves a challenging security problem of ECIoT networks by determining the malicious software propagation threshold,which lays the foundation for buildingmore secure and reliable ECIoT networks.
文摘This study evaluates the development of a testing process for the automotive software domain, highlighting challenges stemming from the absence of adequate processes. The research demonstrates the application of Design Science Research methodology in developing, an automotive software testing process—ProTSA, using six functional testing modules. Additionally, the study evaluates the benefits of implementing ProTSA in a specific Original Equipment Manufacturer (OEM) using an experimental single-case approach with industry professionals’ participation through a survey. The study concludes that combining testing techniques with effective communication and alignment is crucial for enhancing software quality. Furthermore, survey data indicates that implementing ProTSA leads to productivity gains by initiating tests early, resulting in time savings in the testing program and increased productivity for the testing team. Future work will explore implementing ProTSA in cybersecurity, over-the-air software updates, and autonomous vehicle testing processes. .
文摘End-user computing empowers non-developers to manage data and applications, enhancing collaboration and efficiency. Spreadsheets, a prime example of end-user programming environments widely used in business for data analysis. However, Excel functionalities have limits compared to dedicated programming languages. This paper addresses this gap by proposing a prototype for integrating Python’s capabilities into Excel through on-premises desktop to build custom spreadsheet functions with Python. This approach overcomes potential latency issues associated with cloud-based solutions. This prototype utilizes Excel-DNA and IronPython. Excel-DNA allows creating custom Python functions that seamlessly integrate with Excel’s calculation engine. IronPython enables the execution of these Python (CSFs) directly within Excel. C# and VSTO add-ins form the core components, facilitating communication between Python and Excel. This approach empowers users with a potentially open-ended set of Python (CSFs) for tasks like mathematical calculations, statistical analysis, and even predictive modeling, all within the familiar Excel interface. This prototype demonstrates smooth integration, allowing users to call Python (CSFs) just like standard Excel functions. This research contributes to enhancing spreadsheet capabilities for end-user programmers by leveraging Python’s power within Excel. Future research could explore expanding data analysis capabilities by expanding the (CSFs) functions for complex calculations, statistical analysis, data manipulation, and even external library integration. The possibility of integrating machine learning models through the (CSFs) functions within the familiar Excel environment.
基金Supported by Shandong Province Key R and D Program,No.2021SFGC0504Shandong Provincial Natural Science Foundation,No.ZR2021MF079Science and Technology Development Plan of Jinan(Clinical Medicine Science and Technology Innovation Plan),No.202225054.
文摘Depression is a common mental health disorder.With current depression detection methods,specialized physicians often engage in conversations and physiological examinations based on standardized scales as auxiliary measures for depression assessment.Non-biological markers-typically classified as verbal or non-verbal and deemed crucial evaluation criteria for depression-have not been effectively utilized.Specialized physicians usually require extensive training and experience to capture changes in these features.Advancements in deep learning technology have provided technical support for capturing non-biological markers.Several researchers have proposed automatic depression estimation(ADE)systems based on sounds and videos to assist physicians in capturing these features and conducting depression screening.This article summarizes commonly used public datasets and recent research on audio-and video-based ADE based on three perspectives:Datasets,deficiencies in existing research,and future development directions.
文摘The developed auxiliary software serves to simplify, standardize and facilitate the software loading of the structural organization of a complex technological system, as well as its further manipulation within the process of solving the considered technological system. Its help can be especially useful in the case of a complex structural organization of a technological system with a large number of different functional elements grouped into several technological subsystems. This paper presents the results of its application for a special complex technological system related to the reference steam block for the combined production of heat and electricity.
文摘In recent years,the domain of machine translation has experienced remarkable growth,particularly with the emergence of neural machine translation,which has significantly enhanced both the accuracy and fluency of translation.At the same time,AI also showed its tremendous advancement,with its capabilities now extending to assisting users in a multitude of tasks,including translation,garnering attention across various sectors.In this paper,the author selects representative sentences from both literary and scientific texts,and translates them using two translation software and two AI tools for comparison.The results show that all four translation tools are very efficient and can help with simple translation tasks.However,the accuracy of terminology needs to be improved,and it is difficult to make adjustments based on the characteristics of the target language.It is worth mentioning that one of the advantages of AI is its interactivity,which allows it to modify the translation according to the translator’s needs.