期刊文献+
共找到1,541篇文章
< 1 2 78 >
每页显示 20 50 100
Role of CD36 in central nervous system diseases 被引量:1
1
作者 Min Feng Qiang Zhou +5 位作者 Huimin Xie Chang Liu Mengru Zheng Shuyu Zhang Songlin Zhou Jian Zhao 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期512-518,共7页
CD36 is a highly glycosylated integral membrane protein that belongs to the scavenger receptor class B family and regulates the pathological progress of metabolic diseases.CD36 was recently found to be widely expresse... CD36 is a highly glycosylated integral membrane protein that belongs to the scavenger receptor class B family and regulates the pathological progress of metabolic diseases.CD36 was recently found to be widely expressed in various cell types in the nervous system,including endothelial cells,pericytes,astrocytes,and microglia.CD36 mediates a number of regulatory processes,such as endothelial dysfunction,oxidative stress,mitochondrial dysfunction,and inflammatory responses,which are involved in many central nervous system diseases,such as stroke,Alzheimer’s disease,Parkinson’s disease,and spinal cord injury.CD36 antagonists can suppress CD36 expression or prevent CD36 binding to its ligand,thereby achieving inhibition of CD36-mediated pathways or functions.Here,we reviewed the mechanisms of action of CD36 antagonists,such as Salvianolic acid B,tanshinone IIA,curcumin,sulfosuccinimidyl oleate,antioxidants,and small-molecule compounds.Moreover,we predicted the structures of binding sites between CD36 and antagonists.These sites can provide targets for more efficient and safer CD36 antagonists for the treatment of central nervous system diseases. 展开更多
关键词 animal experiments ANTAGONISTS CD36 antagonist central nervous system diseases clinical trial curcumin microRNA salvianolic acid B small-molecule drugs sulfosuccinimidyl oleate
下载PDF
Microglia lactylation in relation to central nervous system diseases
2
作者 Hui Yang Nan Mo +5 位作者 Le Tong Jianhong Dong Ziwei Fan Mengxian Jia Juanqing Yue Ying Wang 《Neural Regeneration Research》 SCIE CAS 2025年第1期29-40,共12页
The development of neurodegenerative diseases is closely related to the disruption of central nervous system homeostasis.Microglia,as innate immune cells,play important roles in the maintenance of central nervous syst... The development of neurodegenerative diseases is closely related to the disruption of central nervous system homeostasis.Microglia,as innate immune cells,play important roles in the maintenance of central nervous system homeostasis,injury response,and neurodegenerative diseases.Lactate has been considered a metabolic waste product,but recent studies are revealing ever more of the physiological functions of lactate.Lactylation is an important pathway in lactate function and is involved in glycolysis-related functions,macrophage polarization,neuromodulation,and angiogenesis and has also been implicated in the development of various diseases.This review provides an overview of the lactate metabolic and homeostatic regulatory processes involved in microglia lactylation,histone versus non-histone lactylation,and therapeutic approaches targeting lactate.Finally,we summarize the current research on microglia lactylation in central nervous system diseases.A deeper understanding of the metabolic regulatory mechanisms of microglia lactylation will provide more options for the treatment of central nervous system diseases. 展开更多
关键词 brain central nervous system GLYCOLYSIS immune response INFLAMMATION lactate metabolism LACTATE lactylation MICROGLIA neurodegenerative diseases
下载PDF
Meningeal lymphatic vessel crosstalk with central nervous system immune cells in aging and neurodegenerative diseases
3
作者 Minghuang Gao Xinyue Wang +5 位作者 Shijie Su Weicheng Feng Yaona Lai Kongli Huang Dandan Cao Qi Wang 《Neural Regeneration Research》 SCIE CAS 2025年第3期763-778,共16页
Meningeal lymphatic vessels form a relationship between the nervous system and periphery, which is relevant in both health and disease. Meningeal lymphatic vessels not only play a key role in the drainage of brain met... Meningeal lymphatic vessels form a relationship between the nervous system and periphery, which is relevant in both health and disease. Meningeal lymphatic vessels not only play a key role in the drainage of brain metabolites but also contribute to antigen delivery and immune cell activation. The advent of novel genomic technologies has enabled rapid progress in the characterization of myeloid and lymphoid cells and their interactions with meningeal lymphatic vessels within the central nervous system. In this review, we provide an overview of the multifaceted roles of meningeal lymphatic vessels within the context of the central nervous system immune network, highlighting recent discoveries on the immunological niche provided by meningeal lymphatic vessels. Furthermore, we delve into the mechanisms of crosstalk between meningeal lymphatic vessels and immune cells in the central nervous system under both homeostatic conditions and neurodegenerative diseases, discussing how these interactions shape the pathological outcomes. Regulation of meningeal lymphatic vessel function and structure can influence lymphatic drainage, cerebrospinal fluid-borne immune modulators, and immune cell populations in aging and neurodegenerative disorders, thereby playing a key role in shaping meningeal and brain parenchyma immunity. 展开更多
关键词 central nervous system meningeal lymphatic vessels IMMUNITY myeloid cells lymphatic cells neurodegenerative disease
下载PDF
Oligodendrocytes in central nervous system diseases:the effect of cytokine regulation
4
作者 Chengfu Zhang Mengsheng Qiu Hui Fu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第10期2132-2143,共12页
Cytokines including tumor necrosis factor, interleukins, interferons, and chemokines are abundantly produced in various diseases. As pleiotropic factors, cytokines are involved in nearly every aspect of cellular funct... Cytokines including tumor necrosis factor, interleukins, interferons, and chemokines are abundantly produced in various diseases. As pleiotropic factors, cytokines are involved in nearly every aspect of cellular functions such as migration, survival, proliferation, and differentiation. Oligodendrocytes are the myelin-forming cells in the central nervous system and play critical roles in the conduction of action potentials, supply of metabolic components for axons, and other functions. Emerging evidence suggests that both oligodendrocytes and oligodendrocyte precursor cells are vulnerable to cytokines released under pathological conditions. This review mainly summarizes the effects of cytokines on oligodendrocyte lineage cells in central nervous system diseases. A comprehensive understanding of the effects of cytokines on oligodendrocyte lineage cells contributes to our understanding of central nervous system diseases and offers insights into treatment strategies. 展开更多
关键词 ASTROCYTE central nervous system disease CXC chemokine cytokine interferonγ INTERLEUKIN MICROGLIA OLIGODENDROCYTE oligodendrocyte precursor cell tumor necrosis factorα
下载PDF
Mesenchymal stem cell-derived extracellular vesicles therapy in traumatic central nervous system diseases:a systematic review and meta-analysis 被引量:2
5
作者 Zhelun Yang Zeyan Liang +5 位作者 Jian Rao Fabin Lin Yike Lin Xiongjie Xu Chunhua Wang Chunmei Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第11期2406-2412,共7页
Although there are challenges in treating traumatic central nervous system diseases,mesenchymal stem cell-de rived extracellular vesicles(MSC-EVs) have recently proven to be a promising non-cellular the rapy.We compre... Although there are challenges in treating traumatic central nervous system diseases,mesenchymal stem cell-de rived extracellular vesicles(MSC-EVs) have recently proven to be a promising non-cellular the rapy.We comprehensively evaluated the efficacy of mesenchymal stem cell-de rived extracellular vesicles in traumatic central nervous system diseases in this meta-analysis based on preclinical studies.Our meta-analysis was registered at PROSPERO(CRD42022327904,May 24,2022).To fully retrieve the most relevant articles,the following databases were thoro ughly searched:PubMed,Web of Science,The Cochrane Library,and Ovid-Embase(up to April 1,2022).The included studies were preclinical studies of mesenchymal stem cell-derived extracellular vesicles for traumatic central nervous system diseases.The Systematic Review Centre for Laboratory Animal Experimentation(SYRCLE)’s risk of bias tool was used to examine the risk of publication bias in animal studies.After screening 2347studies,60 studies were included in this study.A meta-analysis was conducted for spinal co rd injury(n=52) and traumatic brain injury(n=8).The results indicated that mesenchymal stem cell-derived extracellular vesicles treatment prominently promoted motor function recovery in spinal co rd injury animals,including rat Basso,Beattie and Bresnahan locomotor rating scale scores(standardized mean difference [SMD]:2.36,95% confidence interval [CI]:1.96-2.76,P <0.01,I2=71%) and mouse Basso Mouse Scale scores(SMD=2.31,95% CI:1.57-3.04,P=0.01,I2=60%) compared with controls.Further,mesenchymal stem cell-de rived extracellular vesicles treatment significantly promoted neurological recovery in traumatic brain injury animals,including the modified N eurological Severity Score(SMD=-4.48,95% CI:-6.12 to-2.84,P <0.01,I2=79%) and Foot Fault Test(SMD=-3.26,95% CI:-4.09 to-2.42,P=0.28,I2=21%) compared with controls.Subgroup analyses showed that characteristics may be related to the therapeutic effect of mesenchymal stem cell-de rived extra cellular vesicles.For Basso,Beattie and Bresnahan locomotor rating scale scores,the efficacy of allogeneic mesenchymal stem cell-derived extracellular vesicles was higher than that of xenogeneic mesenchymal stem cell-derived extracellular vesicles(allogeneic:SMD=2.54,95% CI:2.05-3.02,P=0.0116,I2=65.5%;xenogeneic:SMD:1.78,95%CI:1.1-2.45,P=0.0116,I2=74.6%).Mesenchymal stem cellde rived extracellular vesicles separated by ultrafiltration centrifugation combined with density gradient ultra centrifugation(SMD=3.58,95% CI:2.62-4.53,P <0.0001,I2=31%) may be more effective than other EV isolation methods.For mouse Basso Mouse Scale scores,placenta-derived mesenchymal stem cell-de rived extracellular vesicles worked better than bone mesenchymal stem cell-derived extracellular vesicles(placenta:SMD=5.25,95% CI:2.45-8.06,P=0.0421,I2=0%;bone marrow:SMD=1.82,95% CI:1.23-2.41,P=0.0421,I2=0%).For modified Neurological Severity Score,bone marrow-derived MSC-EVs worked better than adipose-derived MSC-EVs(bone marrow:SMD=-4.86,95% CI:-6.66 to-3.06,P=0.0306,I2=81%;adipose:SMD=-2.37,95% CI:-3.73 to-1.01,P=0.0306,I2=0%).Intravenous administration(SMD=-5.47,95% CI:-6.98 to-3.97,P=0.0002,I2=53.3%) and dose of administration equal to 100 μg(SMD=-5.47,95% CI:-6.98 to-3.97,P <0.0001,I2=53.3%)showed better res ults than other administration routes and doses.The heterogeneity of studies was small,and sensitivity analysis also indicated stable results.Last,the methodological quality of all trials was mostly satisfactory.In conclusion,in the treatment of traumatic central nervous system diseases,mesenchymal stem cell-derived extracellular vesicles may play a crucial role in promoting motor function recovery. 展开更多
关键词 ANIMALS central nervous system diseases extracellular vesicles mesenchymal stromal cell META-ANALYSIS spinal cord injury traumatic brain injury
下载PDF
Research progress of sphingosine 1-phosphate and its signal transduction in central nervous system diseases
6
作者 BEN Xin-yu YI Xi-nan LI Qi-fu 《Journal of Hainan Medical University》 CAS 2023年第23期64-69,共6页
Sphingosine 1-phosphate(S1P),as a sphingolipid metabolite,has become a key substance in regulating various physiological processes,involved in differentiation,proliferation,migration,morphogenesis,cytoskeleton formati... Sphingosine 1-phosphate(S1P),as a sphingolipid metabolite,has become a key substance in regulating various physiological processes,involved in differentiation,proliferation,migration,morphogenesis,cytoskeleton formation,adhesion,apoptosis,etc.process.Sphingosine 1-phosphate can not only activate the S1P-S1PR signaling pathway by binding to the corresponding receptors on the cell membrane,but also play a role in the cell.In recent years,studies have found that there is a certain relationship between its level changes and the occurrence and development of central nervous system diseases.This article reviews the latest knowledge of sphingosine-1-phosphate in the occurrence and treatment of nervous system diseases,and further clarifies its molecular mechanism in the treatment and development of central nervous system diseases. 展开更多
关键词 Sphingosine 1-phosphate Sphingolipid metabolism central nervous system diseases Sphingosine kinase S1P receptor
下载PDF
Association between central serous chorioretinopathy and Helicobacter pylori infection: a systematic review and Meta-analysis
7
作者 Da-Wen Wu Fei-Peng Jiang +1 位作者 Ge Ge Mei-Xia Zhang 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第6期1120-1127,共8页
AIM:To investigate the association between central serous chorioretinopathy(CSC)and Helicobacter pylori(Hp)by summarizing all available evidence.METHODS:The Scopus,Embase,EBSCO,PubMed,Web of Science,and Cochrane Libra... AIM:To investigate the association between central serous chorioretinopathy(CSC)and Helicobacter pylori(Hp)by summarizing all available evidence.METHODS:The Scopus,Embase,EBSCO,PubMed,Web of Science,and Cochrane Library databases for all relevant studies published from inception to October 2022 were searched,and manually searched for relevant reference lists as a supplement.Studies investigating the association between CSC and Hp infection were included.Finally,8 case-control studies were included in the Meta-analysis after study selection.RESULTS:The results showed no significant correlation between Hp infection and CSC[odds ratio(OR)1.89,95%confidential interval(CI)0.58–6.15,I2=96%,P=0.29].After subgroup analysis based on the degree of development of the study(developing/developed countries),it was found that the results of the two subgroups were the same as the whole,and no significant difference between the two subgroups existed.Meta-regression showed that the effect of sample size on heterogeneity among studies was more prominent(P<0.01,adjusted R^(2)=89.72%),which can explain 89.72%of the sources of heterogeneity.CONCLUSION:This Meta-analysis reveals no significant correlation between Hp infection and CSC,which still warrants further well-designed extensive sample studies to reach a more reliable conclusion and promote a better understanding of the treatment of CSC. 展开更多
关键词 central serous chorioretinopathy Helicobacter pylori infection retinal diseases META-ANALYSIS
下载PDF
Heterogeneity of mature oligodendrocytes in the central nervous system
8
作者 Chao Weng Adam M.R.Groh +4 位作者 Moein Yaqubi Qiao-Ling Cui Jo Anne Stratton G.R.Wayne Moore Jack P.Antel 《Neural Regeneration Research》 SCIE CAS 2025年第5期1336-1349,共14页
Mature oligodendrocytes form myelin sheaths that are crucial for the insulation of axons and efficient signal transmission in the central nervous system.Recent evidence has challenged the classical view of the functio... Mature oligodendrocytes form myelin sheaths that are crucial for the insulation of axons and efficient signal transmission in the central nervous system.Recent evidence has challenged the classical view of the functionally static mature oligodendrocyte and revealed a gamut of dynamic functions such as the ability to modulate neuronal circuitry and provide metabolic support to axons.Despite the recognition of potential heterogeneity in mature oligodendrocyte function,a comprehensive summary of mature oligodendrocyte diversity is lacking.We delve into early 20th-century studies by Robertson and Río-Hortega that laid the foundation for the modern identification of regional and morphological heterogeneity in mature oligodendrocytes.Indeed,recent morphologic and functional studies call into question the long-assumed homogeneity of mature oligodendrocyte function through the identification of distinct subtypes with varying myelination preferences.Furthermore,modern molecular investigations,employing techniques such as single cell/nucleus RNA sequencing,consistently unveil at least six mature oligodendrocyte subpopulations in the human central nervous system that are highly transcriptomically diverse and vary with central nervous system region.Age and disease related mature oligodendrocyte variation denotes the impact of pathological conditions such as multiple sclerosis,Alzheimer's disease,and psychiatric disorders.Nevertheless,caution is warranted when subclassifying mature oligodendrocytes because of the simplification needed to make conclusions about cell identity from temporally confined investigations.Future studies leveraging advanced techniques like spatial transcriptomics and single-cell proteomics promise a more nuanced understanding of mature oligodendrocyte heterogeneity.Such research avenues that precisely evaluate mature oligodendrocyte heterogeneity with care to understand the mitigating influence of species,sex,central nervous system region,age,and disease,hold promise for the development of therapeutic interventions targeting varied central nervous system pathology. 展开更多
关键词 aging central nervous system diseases electron microscopy HETEROGENEITY immunohistochemistry myelin sheath natural history NEUROGLIA OLIGODENDROGLIA single-cell gene expression analysis
下载PDF
The lymphatic system:a therapeutic target for central nervous system disorders 被引量:5
9
作者 Jia-Qi Xu Qian-Qi Liu +4 位作者 Sheng-Yuan Huang Chun-Yue Duan Hong-Bin Lu Yong Cao Jian-Zhong Hu 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第6期1249-1256,共8页
The lymphatic vasculature forms an organized network that covers the whole body and is involved in fluid homeostasis,metabolite clearance,and immune surveillance.The recent identification of functional lymphatic vesse... The lymphatic vasculature forms an organized network that covers the whole body and is involved in fluid homeostasis,metabolite clearance,and immune surveillance.The recent identification of functional lymphatic vessels in the meninges of the brain and the spinal cord has provided novel insights into neurophysiology.They emerge as major pathways for fluid exchange.The abundance of immune cells in lymphatic vessels and meninges also suggests that lymphatic vessels are actively involved in neuroimmunity.The lymphatic system,through its role in the clearance of neurotoxic proteins,autoimmune cell infiltration,and the transmission of pro-inflammatory signals,participates in the pathogenesis of a variety of neurological disorders,including neurodegenerative and neuroinflammatory diseases and traumatic injury.Vascular endothelial growth factor C is the master regulator of lymphangiogenesis,a process that is critical for the maintenance of central nervous system homeostasis.In this review,we summarize current knowledge and recent advances relating to the anatomical features and immunological functions of the lymphatic system of the central nervous system and highlight its potential as a therapeutic target for neurological disorders and central nervous system repair. 展开更多
关键词 central nervous system central nervous system injury glymphatic system lymphatic vessels MENINGES neurodegenerative disorders neuroinflammatory diseases vascular endothelial growth factor C
下载PDF
Extracellular vesicles in the diagnosis and treatment of central nervous system diseases 被引量:11
10
作者 Alisa A.Shaimardanova Valeriya V.Solovyeva +3 位作者 Daria S.Chulpanova Victoria James Kristina V.Kitaeva Albert A.Rizvanov 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第4期586-596,共11页
Extracellular vesicles,including exosomes and microvesicles,play a fundamental role in the activity of the nervous system,participating in signal transmission between neurons and providing the interaction of central n... Extracellular vesicles,including exosomes and microvesicles,play a fundamental role in the activity of the nervous system,participating in signal transmission between neurons and providing the interaction of central nervous system with all body systems.In many neurodegenerative diseases,neurons pack toxic substances into vesicles and release them into the extracellular space,which leads to the spread of misfolded neurotoxic proteins.The contents of neuron-derived extracellular vesicles may indicate pathological changes in the central nervous system,and the analysis of extracellular vesicle molecular content contributes to the development of non-invasive methods for the diagnosis of many central nervous system diseases.Extracellular vesicles of neuronal origin can be isolated from various biological fluids due to their ability to cross the blood-brain barrier.Today,the diagnostic potential of almost all toxic proteins involved in nervous system disease pathogenesis,specificallyα-synuclein,tau protein,superoxide dismutase 1,FUS,leucine-rich repeat kinase 2,as well as some synaptic proteins,has been well evidenced.Special attention is paid to extracellular RNAs mostly associated with extracellular vesicles,which are important in the onset and development of many neurodegenerative diseases.Depending on parental cell type,extracellular vesicles may have different therapeutic properties,including neuroprotective,regenerative,and anti-inflammatory.Due to nano size,biosafety,ability to cross the blood-brain barrier,possibility of targeted delivery and the lack of an immune response,extracellular vesicles are a promising vehicle for the delivery of therapeutic substances for the treatment of neurodegenerative diseases and drug delivery to the brain.This review describes modern approaches of diagnosis and treatment of central nervous system diseases using extracellular vesicles. 展开更多
关键词 biomarkers cell-mediated therapy central nervous system diseases diagnosis EXOSOMES EXTRACELLULAR RNAS EXTRACELLULAR vesicles microRNAs MICROVESICLES NEURODEGENERATIVE diseases
下载PDF
Current application and future directions of photobiomodulation in central nervous diseases 被引量:5
11
作者 Muyue Yang Zhen Yang +1 位作者 Pu Wang Zhihui Sun 《Neural Regeneration Research》 SCIE CAS CSCD 2021年第6期1177-1185,共9页
Photobiomodulation using light in the red or near-infrared region is an innovative treatment strategy for a wide range of neurological and psychological conditions.Photobiomodulation can promote neurogenesis and elici... Photobiomodulation using light in the red or near-infrared region is an innovative treatment strategy for a wide range of neurological and psychological conditions.Photobiomodulation can promote neurogenesis and elicit anti-apoptotic,antiinflammatory and antioxidative responses.Its therapeutic effects have been demonstrated in studies on neurological diseases,peripheral nerve injuries,pain relief and wound healing.We conducted a comprehensive literature review of the application of photobiomodulation in patients with central nervous system diseases in February 2019.The NCBI PubMed database,EMBASE database,Cochrane Library and ScienceDirect database were searched.We reviewed 95 papers and analyzed.Photobiomodulation has wide applicability in the treatment of stroke,traumatic brain injury,Parkinson’s disease,Alzheimer’s disease,major depressive disorder,and other diseases.Our analysis provides preliminary evidence that PBM is an effective therapeutic tool for the treatment of central nervous system diseases.However,additional studies with adequate sample size are needed to optimize treatment parameters. 展开更多
关键词 Alzheimer’s disease central nervous system diseases major depressive disorder Parkinson’s disease PHOTOBIOMODULATION STROKE traumatic brain injury
下载PDF
The effects and potential of microglial polarization and crosstalk with other cells of the central nervous system in the treatment of Alzheimer’s disease 被引量:3
12
作者 Yi-Ge Wu Li-Juan Song +5 位作者 Li-Jun Yin Jun-Jun Yin Qing Wang Jie-Zhong Yu Bao-Guo Xiao Cun-Gen Ma 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第5期947-954,共8页
Microglia are resident immune cells in the central nervous system. During the pathogenesis of Alzheimer’s disease, stimulatory factors continuously act on the microglia causing abnormal activation and unbalanced phen... Microglia are resident immune cells in the central nervous system. During the pathogenesis of Alzheimer’s disease, stimulatory factors continuously act on the microglia causing abnormal activation and unbalanced phenotypic changes;these events have become a significant and promising area of research. In this review, we summarize the effects of microglial polarization and crosstalk with other cells in the central nervous system in the treatment of Alzheimer’s disease. Our literature search found that phenotypic changes occur continuously in Alzheimer’s disease and that microglia exhibit extensive crosstalk with astrocytes, oligodendrocytes, neurons, and penetrated peripheral innate immune cells via specific signaling pathways and cytokines. Collectively, unlike previous efforts to modulate microglial phenotypes at a single level, targeting the phenotypes of microglia and the crosstalk with other cells in the central nervous system may be more effective in reducing inflammation in the central nervous system in Alzheimer’s disease. This would establish a theoretical basis for reducing neuronal death from central nervous system inflammation and provide an appropriate environment to promote neuronal regeneration in the treatment of Alzheimer’s disease. 展开更多
关键词 Alzheimer’s disease amyloid biomarker central nervous system cytokines diabetes inflammation MICROGLIA NEUROINFLAMMATION PHAGOCYTOSIS tau
下载PDF
Electroencephalogram and brainstem auditory evoked potential in 539 patients with central coordination disorder
13
作者 Huijia Zhang Hua Yan Paoqiu Wang Jihong Hu Hongtao Zhou Rong Qin 《Neural Regeneration Research》 SCIE CAS CSCD 2008年第12期1376-1379,共4页
BACKGROUND: Electroencephalogram (EEG) and brainstem auditory evoked potential (BAEP) are objective non-invasive means of measuring brain electrophysiology. OBJECTIVE: To analyze the value of EEG and BAEP in ear... BACKGROUND: Electroencephalogram (EEG) and brainstem auditory evoked potential (BAEP) are objective non-invasive means of measuring brain electrophysiology. OBJECTIVE: To analyze the value of EEG and BAEP in early diagnosis, treatment and prognostic evaluation of central coordination disorder. DESIGN, TIME AND SETTING: This case analysis study was performed at the Rehabilitation Center of Hunan Children's Hospital from January 2002 to January 2006. PARTICIPANTS: A total of 593 patients with severe central coordination disorder, comprising 455 boys and 138 girls, aged 1-6 months were enrolled for this study. METHODS: EEG was monitored using electroencephalography. BAEP was recorded using a Keypoint electromyogram device. Intelligence was tested by professionals using the Gesell scale. MAIN OUTCOME MEASURES: (1) The rate of abnormal EEG and BAEP, (2) correlation of abnormalities of EEG and BAEP with associated injuries, (3) correlation of abnormalities of EEG and BAEP with high risk factors. RESULTS: The rate of abnormal EEG was 68.6% (407/593 patients), and was increased in patients who also had mental retardation (P 〈 0.05). The rate of abnormal BAEP was 21.4% (127/593 patients). These 127 patients included 67 patients (52.8%) with peripheral auditory damage and 60 patients (47.2%) with central and mixed auditory damage. The rate of abnormal BAEP was significantly increased in patients who also had mental retardation (P 〈 0.01 ). Logistic regression analysis showed that asphyxia (P 〈 0.05), jaundice, preterm delivery, low birth weight and the umbilical cord around the neck were closely correlated with abnormal EEG in patients with central coordination disorder, lntracranial hemorrhage, jaundice (P 〈 0.05), low birth weight and intrauterine infection (P 〈 0.05) were closely correlated with abnormal BAEP in patients with central coordination disorder. CONCLUSION: Central coordination disorder is often associated with abnormal EEG and BAEP. The rate of EEG or BAEP abnormality is positively associated with the size of the brain injury. Asphyxia is a high risk factor for abnormal EEG in central coordination disorder. Jaundice and intrauterine infection are high risk factors for abnormal BAEP in central coordination disorder. 展开更多
关键词 ELECTROENCEPHALOGRAM brainstem auditory evoked potential central coordination disorder
下载PDF
Two types of auditory glutamatergic synapses and their implications for repairing damaged central auditory pathways
14
作者 Charles C.Lee 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第10期1000-1002,共3页
For the mammalian brain to process and decipher the rich panoply of sounds that abound in the world, nature has evolved an elegant collection of neural circuits dedicated to this task. Indeed, the complexity, variety ... For the mammalian brain to process and decipher the rich panoply of sounds that abound in the world, nature has evolved an elegant collection of neural circuits dedicated to this task. Indeed, the complexity, variety and number of neural pathways devoted to computing auditory information is unique among sensory modalities (Kaas, 2008). After the initial sensorineural encoding of sound at the level of the cochlea, auditory information is processed in several lower brainstem centers and eventually converges in the midbrain, at the level of the inferior colliculus (Wenstrup, 2005), Subsequently, auditory information is transferred through the thalamus, the medial geniculate body, and then the auditory cortex (Winer et al., 2005; Razak and Fuzessery, 2010; Hackett, 2011; Lee and Sherman, 2011; Lee and Winer, 2011; 展开更多
关键词 Two types of auditory glutamatergic synapses and their implications for repairing damaged central auditory pathways body FIGURE
下载PDF
Role of prophylactic central neck lymph node dissection for papillary thyroid carcinoma in the era of de-escalation 被引量:1
15
作者 Efstathios T Pavlidis Theodoros E Pavlidis 《World Journal of Clinical Oncology》 2023年第7期247-258,共12页
Thyroid cancer is the most common endocrine malignancy.While there has been no appreciable increase in the observed mortality of well-differentiated thyroid cancer,there has been an overall rise in its incidence world... Thyroid cancer is the most common endocrine malignancy.While there has been no appreciable increase in the observed mortality of well-differentiated thyroid cancer,there has been an overall rise in its incidence worldwide over the last few decades.Patients with papillary thyroid carcinoma(PTC)and clinical evidence of central(cN1)and/or lateral lymph node metastases require total thyroidectomy plus central and/or lateral neck dissection as the initial surgical treatment.Nodal status in PTC patients plays a crucial role in the prognostic evaluation of the recurrence risk.The 2015 guidelines of the American Thyroid Association(ATA)have more accurately determined the indications for therapeutic central and lateral lymph node dissection.However,prophylactic central neck lymph node dissection(pCND)in negative lymph node(cN0)PTC patients is controversial,as the 2009 ATA guidelines recommended that CND“should be considered”routinely in patients who underwent total thyroidectomy for PTC.Although the current guidelines show clear indications for therapeutic CND,the role of pCND in cN0 patients with PTC is still debated.In small solitary papillary carcinoma(T1,T2),pCND is not recommended unless there are high-risk prediction factors for recurrence and diffuse nodal spread(extrathyroid extension,mutation in the BRAF gene).pCND can be considered in cN0 disease with advanced primary tumors(T3 or T4)or clinical lateral neck disease(cN1b)or for staging and treatment planning purposes.The role of the preoperative evaluation is fundamental to minimizing the possible detrimental effect of overtreatment of the types of patients who are associated with low disease-related morbidity and mortality.On the other hand,it determines the choice of appropriate treatment and determines if close monitoring of patients at a higher risk is needed.Thus,pCND is currently recommended for T3 and T4 tumors but not for T1 and T2 tumors without high-risk prediction factors of recurrence. 展开更多
关键词 Well differentiated carcinoma Papillary thyroid cancer Prophylactic central neck dissection Thyroid disease THYROIDECTOMY LYMPHADENECTOMY
下载PDF
Visual function and biofeedback training of patients with central vision loss:a review
16
作者 Yu Deng Chuan-Hong Jie +2 位作者 Jian-Wei Wang Yuan-Yuan Li Zi-Qiang Liu 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2023年第5期824-831,共8页
Older individuals with macular diseases,such as age-related macular degeneration,experience central vision loss(CVL)due to degeneration of their photoreceptors and retinal cells.Patients with CVL may experience variou... Older individuals with macular diseases,such as age-related macular degeneration,experience central vision loss(CVL)due to degeneration of their photoreceptors and retinal cells.Patients with CVL may experience various vision impairments,including of visual acuity,fixation stability,contrast sensitivity,and stereoacuity.After CVL,most patients develop a preferred retinal locus outside the affected macular region,which serves as a new visual reference.In this review,we provide an overview of the visual function and impairment in individuals with CVL.In addition,the important role of biofeedback training on the visual function and activity of individuals with CVL is also reviewed.Accordingly,the location and development of the preferred retinal loci are discussed.Finally,this review discusses how to conduct biofeedback training to treat individuals with CVL. 展开更多
关键词 central vision loss biofeedback training preferred retinal locus visual acuity macular disease
下载PDF
Nanoparticle delivery for central nervous system diseases and its clinical application
17
作者 Lin Tang Rui Zhang +4 位作者 Yusi Wang Mohan Liu Die Hu Yuanda Wang Li Yang 《Nano Research》 SCIE EI CSCD 2024年第7期6305-6322,共18页
In the treatment of central nervous system(CNS)diseases such as glioma,Alzheimer's disease(AD)and Parkinson's disease(PD),drugs are expected to reach specific areas of the brain to achieve the desired effect.A... In the treatment of central nervous system(CNS)diseases such as glioma,Alzheimer's disease(AD)and Parkinson's disease(PD),drugs are expected to reach specific areas of the brain to achieve the desired effect.Although a growing number of therapeutic targets have been identified in preclinical studies,the ones that can ultimately be used in the clinic are limited.Therefore,the research process and clinical application of drugs for treating CNS diseases are still large challenges.Physiological barriers such as the blood‒brain barrier(BBB)act as selective permeable membranes,allowing only certain molecules to enter the brain;this barrier is the major obstacle restricting the arrival of most drugs to brain lesions.Recently,nanoparticles,including lipid-based,cell-derived biomimetic,polymeric and inorganic nanoparticles,have gained increasing attention because of their ability to cross physiological barriers,and could play an important role as delivery carriers and immunomodulators.Additionally,clinical applications of nanoparticles in CNS diseases are underway.This review focuses on the progress of current research on the use of nanoparticles for the treatment of CNS diseases to provide additional insight into the treatment of CNS diseases. 展开更多
关键词 NANOPARTICLES central nervous system(CNS)diseases clinical applications delivery carriers IMMUNOMODULATORS
原文传递
Connexin:a potential novel target for protecting the central nervous system? 被引量:6
18
作者 Hong-yan Xie Yu Cui +1 位作者 Fang Deng Jia-chun Feng 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第4期659-666,共8页
Connexin subunits are proteins that form gap junction channels, and play an important role in communication between adjacent cells. This review article discusses the function of connexins/hemichannels/gap junctions un... Connexin subunits are proteins that form gap junction channels, and play an important role in communication between adjacent cells. This review article discusses the function of connexins/hemichannels/gap junctions under physiological conditions, and summarizes the findings re-garding the role of connexins/hemichannels/gap junctions in the physiological and pathological mechanisms underlying central nervous system diseases such as brain ischemia, traumatic brain and spinal cord injury, epilepsy, brain and spinal cord tumor, migraine, neuroautoimmune disease, Alzheimer’s disease, Parkinson’s disease, X-linked Charcot-Marie-Tooth disease, Peli-zaeus-Merzbacher-like disease, spastic paraplegia and maxillofacial dysplasia. Connexins are considered to be a potential novel target for protecting the central nervous system. 展开更多
关键词 CONNEXIN gap junction biosynthetic pathways BIODEGRADATION BRAIN central nervous system diseases
下载PDF
MicroRNAs of microglia: wrestling with central nervous system disease 被引量:5
19
作者 Xiao-Hua Wang Tian-Long Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第12期2067-2072,共6页
Microglia serve as brain-resident myeloid cells that affect cerebral development, ischemia, neurodegeneration, and neuro-viral infection. MicroRNAs play a key role in central nervous system disease through post-transc... Microglia serve as brain-resident myeloid cells that affect cerebral development, ischemia, neurodegeneration, and neuro-viral infection. MicroRNAs play a key role in central nervous system disease through post-transcriptional regulation. Indeed, evidence shows that microRNAs are one of the most important regulators mediating microglial activation, polarization, and autophagy, and subsequently affecting neuroinflammation and the outcome of central nervous system disease. In this review, we provide insight into the function of microRNAs, which may be an attractive strategy and influential treatment for microglia-related central nervous system dysfunction. Moreover, we comprehensively describe how microglia fight against central nervous system disease via multiple functional microRNAs. 展开更多
关键词 MICROGLIA NEURODEGENERATION central nervous system disease MICRORNAS activation polarization AUTOPHAGY neural regeneration
下载PDF
The Olig family affects central nervous system development and disease 被引量:5
20
作者 Botao Tan Jing Yu +3 位作者 Ying Yin Gongwei Jia Wei Jiang Lehua Yu 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第3期329-336,共8页
Neural cell differentiation and maturation is a critical step during central nervous system devel-opment. The oligodendrocyte transcription family (Olig family) is known to be an important factor in regulating neura... Neural cell differentiation and maturation is a critical step during central nervous system devel-opment. The oligodendrocyte transcription family (Olig family) is known to be an important factor in regulating neural cell differentiation. Because of this, the Olig family also affects acute and chronic central nervous system diseases, including brain injury, multiple sclerosis, and even gliomas. Improved understanding about the functions of the Olig family in central nervous system development and disease will greatly aid novel breakthroughs in central nervous system diseases. This review investigates the role of the Olig family in central nervous system develop- ment and related diseases. 展开更多
关键词 nerve regeneration brain injury spinal cord injury review Olig family oligodendro-cytes ASTROCYTES central nervous system disease DEMYELINATION development DIFFERENTIATION NSFCgrant neural regeneration
下载PDF
上一页 1 2 78 下一页 到第
使用帮助 返回顶部