期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Hopf Amplification Originated from the Force-Gating Channels of Auditory Hair Cells 被引量:1
1
作者 田霖 张艳平 龙长才 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第12期146-150,共5页
The sense of mammalian hearing exhibits nonlinear phenomena which are most significant to hearing function, such as nonlinear dynamic compression, nonlinear tuning and combination tones. These nonlinear phenomena are ... The sense of mammalian hearing exhibits nonlinear phenomena which are most significant to hearing function, such as nonlinear dynamic compression, nonlinear tuning and combination tones. These nonlinear phenomena are suggested to originate from the Hopf amplification within the cochlea, while the mechanism underlying the Hopf amplification remains elusive. According to the experimental results of force-gating channel operation in hair cells, through a theoretic model, this work reveals a velocity-dependent open probability of force-gating channels in auditory hair cells, and a velocity-dependent active force produced by the force-gating channel operating, which makes sensors hear typical Hopf vibrators with nonlinear hearing phenomena. 展开更多
关键词 of it on for in Hopf Amplification Originated from the Force-Gating Channels of auditory hair cells is from that
下载PDF
Injury and protection of spiral ganglion neurons
2
作者 Beilei Duan Kevin A.Peng Line Wang 《Chinese Medical Journal》 SCIE CAS CSCD 2024年第6期651-656,共6页
Cochlear spiral ganglion neurons(SGNs)are bipolar ganglion cells and are the first neurons in the auditory transduction pathway.They transmit complex acoustic information from hair cells to second-order sensory neuron... Cochlear spiral ganglion neurons(SGNs)are bipolar ganglion cells and are the first neurons in the auditory transduction pathway.They transmit complex acoustic information from hair cells to second-order sensory neurons in the cochlear nucleus for sound processing.Injury to SGNs causes largely irreversible hearing impairment because these neurons are highly differentiated cells and cannot regenerate,making treatment of sensorineural hearing loss(SNHL)arising from SGN injury difficult.When exposed to ototoxic drugs or damaging levels of noise or when there is loss of neurotrophic factors(NTFs),aging,and presence of other factors,SGNs can be irreversibly damaged,resulting in SNHL.It has been found that NTFs and stem cells can induce regeneration among dead spiral ganglion cells.In this paper,we summarized the present knowledge regarding injury,protection,and regeneration of SGNs. 展开更多
关键词 Spiral ganglion INJURY PROTECTION auditory hair cell Ototoxic drugs AMINOGLYCOSIDES PRESBYCUSIS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部