The sense of mammalian hearing exhibits nonlinear phenomena which are most significant to hearing function, such as nonlinear dynamic compression, nonlinear tuning and combination tones. These nonlinear phenomena are ...The sense of mammalian hearing exhibits nonlinear phenomena which are most significant to hearing function, such as nonlinear dynamic compression, nonlinear tuning and combination tones. These nonlinear phenomena are suggested to originate from the Hopf amplification within the cochlea, while the mechanism underlying the Hopf amplification remains elusive. According to the experimental results of force-gating channel operation in hair cells, through a theoretic model, this work reveals a velocity-dependent open probability of force-gating channels in auditory hair cells, and a velocity-dependent active force produced by the force-gating channel operating, which makes sensors hear typical Hopf vibrators with nonlinear hearing phenomena.展开更多
Cochlear spiral ganglion neurons(SGNs)are bipolar ganglion cells and are the first neurons in the auditory transduction pathway.They transmit complex acoustic information from hair cells to second-order sensory neuron...Cochlear spiral ganglion neurons(SGNs)are bipolar ganglion cells and are the first neurons in the auditory transduction pathway.They transmit complex acoustic information from hair cells to second-order sensory neurons in the cochlear nucleus for sound processing.Injury to SGNs causes largely irreversible hearing impairment because these neurons are highly differentiated cells and cannot regenerate,making treatment of sensorineural hearing loss(SNHL)arising from SGN injury difficult.When exposed to ototoxic drugs or damaging levels of noise or when there is loss of neurotrophic factors(NTFs),aging,and presence of other factors,SGNs can be irreversibly damaged,resulting in SNHL.It has been found that NTFs and stem cells can induce regeneration among dead spiral ganglion cells.In this paper,we summarized the present knowledge regarding injury,protection,and regeneration of SGNs.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 11374118the Science Foundation of Hubei Province under Grant No 2013CFB289
文摘The sense of mammalian hearing exhibits nonlinear phenomena which are most significant to hearing function, such as nonlinear dynamic compression, nonlinear tuning and combination tones. These nonlinear phenomena are suggested to originate from the Hopf amplification within the cochlea, while the mechanism underlying the Hopf amplification remains elusive. According to the experimental results of force-gating channel operation in hair cells, through a theoretic model, this work reveals a velocity-dependent open probability of force-gating channels in auditory hair cells, and a velocity-dependent active force produced by the force-gating channel operating, which makes sensors hear typical Hopf vibrators with nonlinear hearing phenomena.
基金supported by a grant from the Beijing Municipal Commission of Science and Technology(Applied technology research and development project)(No.Z191100007619043).
文摘Cochlear spiral ganglion neurons(SGNs)are bipolar ganglion cells and are the first neurons in the auditory transduction pathway.They transmit complex acoustic information from hair cells to second-order sensory neurons in the cochlear nucleus for sound processing.Injury to SGNs causes largely irreversible hearing impairment because these neurons are highly differentiated cells and cannot regenerate,making treatment of sensorineural hearing loss(SNHL)arising from SGN injury difficult.When exposed to ototoxic drugs or damaging levels of noise or when there is loss of neurotrophic factors(NTFs),aging,and presence of other factors,SGNs can be irreversibly damaged,resulting in SNHL.It has been found that NTFs and stem cells can induce regeneration among dead spiral ganglion cells.In this paper,we summarized the present knowledge regarding injury,protection,and regeneration of SGNs.