An in situ heating system was built for the Auger electron spectroscopy to investigate the thermal effect of Auger lines. A GaN sample was studied in this system. The kinetic energy of Ga LMM and MVV Auger lines were ...An in situ heating system was built for the Auger electron spectroscopy to investigate the thermal effect of Auger lines. A GaN sample was studied in this system. The kinetic energy of Ga LMM and MVV Auger lines were observed to shift negatively with temperature increasing. By using ab initio calculation, the theoretical Ga MVV Auger line shape was fit, which well reflects the inner property of the line. The Auger shift with heating is related with the valence electron rearrangement in the thermal expansion of the local bonds.展开更多
The comet assay (single cell gel electrophoresis assay) was used to evaluate the radiotoxicity of Augerelectron emitters in the human osteosarcoma cell line (HOS-8603). After internal exposure to 67Ga-EDTMP, the sar-c...The comet assay (single cell gel electrophoresis assay) was used to evaluate the radiotoxicity of Augerelectron emitters in the human osteosarcoma cell line (HOS-8603). After internal exposure to 67Ga-EDTMP, the sar-coma cell has been injured severely. The comet length was longer along with the increase of dose, the appearance ofcomet tail was different from that with respect to the 60Co γ-ray irradiation. DNA damage of cell was mainly due tothe radiation effect of Auger electrons. The 67Ga may be a therapeutic radionuclide with good prospect for tumortreatment and palliation of bone pain induced by metastasis.展开更多
Calculations of energies and absolute intensities of Auger electron and X-ray arising from electron cap- ture are introduced briefly. The calculation codes and main process are also presented. The application is also ...Calculations of energies and absolute intensities of Auger electron and X-ray arising from electron cap- ture are introduced briefly. The calculation codes and main process are also presented. The application is also given by taking 55Fe ε decay as an example.展开更多
Garnet-type oxide solid electrolytes are the critical materials for all-solid-state lithium ion batteries.Nanoscale spectroscopic analysis on solid electrolytes plays a key role in bridging the gap between microstruct...Garnet-type oxide solid electrolytes are the critical materials for all-solid-state lithium ion batteries.Nanoscale spectroscopic analysis on solid electrolytes plays a key role in bridging the gap between microstructure and properties.In this work,Auger electron spectroscopy(AES),which can directly detect lithium element and distinguish its valence state,was applied to characterize the garnet-type Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6O12)(LLZTO).Different spectroscopy parameters were evaluated and optimal acquisition conditions were provided.Electron induced precipitation of lithium metal from LLZTO was observed.By exploring the influence factors of precipitation and combining transmission electron microscopy(TEM)and focused ion beam(FIB)experiments,the underlying mechanism of the phenomenon was revealed and previous controversy was resolved.The analysis method was also extended to other types of solid electrolytes,and this work provides a reference for future in-depth research on the structure-property relationship of solid electrolytes using AES.展开更多
The chemical stoichiometry on the surface of superconducting δ-NbN thin films is of great importance for their application.Here,we fabricated the δ-NbN thin films on SiO2/Si substrate by DC sputtering method.The fil...The chemical stoichiometry on the surface of superconducting δ-NbN thin films is of great importance for their application.Here,we fabricated the δ-NbN thin films on SiO2/Si substrate by DC sputtering method.The film was characterized using X-ray diffraction(XRD) and atomic force microscopy(AFM).Transport properties were measured to reveal the field dependent superconducting transition temperature.Both XRD and electrical measurement show high crystallinity of δ-NbN phase.A homogeneous and smooth surface morphology was measured by AFM.Auger electron spectroscopy(AES) was applied to analyze the composition along the depth of the film.The evolution of Auger peak profile,heights and nitride stoichiometry at the film surface is discussed.The current study provides a more thorough understanding of complex chemical compositions of δ-NbN thin films.展开更多
Auger electron emitting radionuclides have potential for the therapy of small-size cancers because of their high level of cytotoxicity, low-energy, high linear energy transfer, and short range biologic effectiveness. ...Auger electron emitting radionuclides have potential for the therapy of small-size cancers because of their high level of cytotoxicity, low-energy, high linear energy transfer, and short range biologic effectiveness. Auger emitter 165Er (T1/2 = 10.3 h, IEC = 100%) is a potent nuclide for targeted radionuclide therapy. 165Er excitation function via 165Ho(p,n)165Er, 165Ho(d,2n)165Er, 166Er(p,2n)165Tm→165Er, 166Er(d,3n)165Tm→165Er, natEr(p,xn)165Tm→165Er and 164Er(d,n)165Tm→165Er reactions were calculated by ALICE/91, ALICE/ASH (GDH Model & Hybrid Model) and TALYS-1.2 (Equilibrium & Pre-Equilibrium) codes and compared to existing data. Requisite for optimal thicknesses of targets were obtained by SRIM code for each reaction.展开更多
基金The author would like to express thanks to Professor Jun-yong Kang and Dr. Duan-jun Cai for their valuable discussions. This work was partly supported by the National Nature Science Foundation of China (No.60206030, No.10134030 and No.69976023) and the Natural Science Found of Xiamen University (No.B200337).
文摘An in situ heating system was built for the Auger electron spectroscopy to investigate the thermal effect of Auger lines. A GaN sample was studied in this system. The kinetic energy of Ga LMM and MVV Auger lines were observed to shift negatively with temperature increasing. By using ab initio calculation, the theoretical Ga MVV Auger line shape was fit, which well reflects the inner property of the line. The Auger shift with heating is related with the valence electron rearrangement in the thermal expansion of the local bonds.
文摘The comet assay (single cell gel electrophoresis assay) was used to evaluate the radiotoxicity of Augerelectron emitters in the human osteosarcoma cell line (HOS-8603). After internal exposure to 67Ga-EDTMP, the sar-coma cell has been injured severely. The comet length was longer along with the increase of dose, the appearance ofcomet tail was different from that with respect to the 60Co γ-ray irradiation. DNA damage of cell was mainly due tothe radiation effect of Auger electrons. The 67Ga may be a therapeutic radionuclide with good prospect for tumortreatment and palliation of bone pain induced by metastasis.
文摘Calculations of energies and absolute intensities of Auger electron and X-ray arising from electron cap- ture are introduced briefly. The calculation codes and main process are also presented. The application is also given by taking 55Fe ε decay as an example.
基金supported by the Shanghai Science and Technology Plan(No.21DZ2260400)the startup funding from ShanghaiTech University.The electron microscopy characterization was supported by the Center for High-resolution Electron Microscopy(CћEM)at ShanghaiTech University。
文摘Garnet-type oxide solid electrolytes are the critical materials for all-solid-state lithium ion batteries.Nanoscale spectroscopic analysis on solid electrolytes plays a key role in bridging the gap between microstructure and properties.In this work,Auger electron spectroscopy(AES),which can directly detect lithium element and distinguish its valence state,was applied to characterize the garnet-type Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6O12)(LLZTO).Different spectroscopy parameters were evaluated and optimal acquisition conditions were provided.Electron induced precipitation of lithium metal from LLZTO was observed.By exploring the influence factors of precipitation and combining transmission electron microscopy(TEM)and focused ion beam(FIB)experiments,the underlying mechanism of the phenomenon was revealed and previous controversy was resolved.The analysis method was also extended to other types of solid electrolytes,and this work provides a reference for future in-depth research on the structure-property relationship of solid electrolytes using AES.
基金supported in part by the Ministry of Science and Technology (MOST) of China (No. 2018YFE0202700)the National Natural Science Foundation of China (Grants No.12004251,12104302,12104303)+3 种基金the Natural Science Foundation of Shanghai (Grant No.20ZR1436100)the Science and Technology Commission of Shanghai Municipality,the start-up funding from ShanghaiTech UniversityBeijing National Laboratory for Condensed Matter Physicsthe Interdisciplinary Program of Wuhan National High Magnetic Field Center (WHMFC202124)。
文摘The chemical stoichiometry on the surface of superconducting δ-NbN thin films is of great importance for their application.Here,we fabricated the δ-NbN thin films on SiO2/Si substrate by DC sputtering method.The film was characterized using X-ray diffraction(XRD) and atomic force microscopy(AFM).Transport properties were measured to reveal the field dependent superconducting transition temperature.Both XRD and electrical measurement show high crystallinity of δ-NbN phase.A homogeneous and smooth surface morphology was measured by AFM.Auger electron spectroscopy(AES) was applied to analyze the composition along the depth of the film.The evolution of Auger peak profile,heights and nitride stoichiometry at the film surface is discussed.The current study provides a more thorough understanding of complex chemical compositions of δ-NbN thin films.
文摘Auger electron emitting radionuclides have potential for the therapy of small-size cancers because of their high level of cytotoxicity, low-energy, high linear energy transfer, and short range biologic effectiveness. Auger emitter 165Er (T1/2 = 10.3 h, IEC = 100%) is a potent nuclide for targeted radionuclide therapy. 165Er excitation function via 165Ho(p,n)165Er, 165Ho(d,2n)165Er, 166Er(p,2n)165Tm→165Er, 166Er(d,3n)165Tm→165Er, natEr(p,xn)165Tm→165Er and 164Er(d,n)165Tm→165Er reactions were calculated by ALICE/91, ALICE/ASH (GDH Model & Hybrid Model) and TALYS-1.2 (Equilibrium & Pre-Equilibrium) codes and compared to existing data. Requisite for optimal thicknesses of targets were obtained by SRIM code for each reaction.