An in situ heating system was built for the Auger electron spectroscopy to investigate the thermal effect of Auger lines. A GaN sample was studied in this system. The kinetic energy of Ga LMM and MVV Auger lines were ...An in situ heating system was built for the Auger electron spectroscopy to investigate the thermal effect of Auger lines. A GaN sample was studied in this system. The kinetic energy of Ga LMM and MVV Auger lines were observed to shift negatively with temperature increasing. By using ab initio calculation, the theoretical Ga MVV Auger line shape was fit, which well reflects the inner property of the line. The Auger shift with heating is related with the valence electron rearrangement in the thermal expansion of the local bonds.展开更多
Garnet-type oxide solid electrolytes are the critical materials for all-solid-state lithium ion batteries.Nanoscale spectroscopic analysis on solid electrolytes plays a key role in bridging the gap between microstruct...Garnet-type oxide solid electrolytes are the critical materials for all-solid-state lithium ion batteries.Nanoscale spectroscopic analysis on solid electrolytes plays a key role in bridging the gap between microstructure and properties.In this work,Auger electron spectroscopy(AES),which can directly detect lithium element and distinguish its valence state,was applied to characterize the garnet-type Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6O12)(LLZTO).Different spectroscopy parameters were evaluated and optimal acquisition conditions were provided.Electron induced precipitation of lithium metal from LLZTO was observed.By exploring the influence factors of precipitation and combining transmission electron microscopy(TEM)and focused ion beam(FIB)experiments,the underlying mechanism of the phenomenon was revealed and previous controversy was resolved.The analysis method was also extended to other types of solid electrolytes,and this work provides a reference for future in-depth research on the structure-property relationship of solid electrolytes using AES.展开更多
Auger Electron Spectroscopy was used to characterize the initial stages of the oxidation of Ce-5% La alloy in an oxygen atmosphere at low pressure( ~ 10-6 Pa) and room temperature after the surface is cleaned by Ar+ ...Auger Electron Spectroscopy was used to characterize the initial stages of the oxidation of Ce-5% La alloy in an oxygen atmosphere at low pressure( ~ 10-6 Pa) and room temperature after the surface is cleaned by Ar+ ion bombardment.It is shown that exposure of clean cerium to oxygen causes the appearance and development of three new Auger peaks at 97,662 and 676 eV, which steadily grow during oxidation of cerium.Upon oxygen dose less than 20 L,a semi-protective layer of oxide forms on the surface of cerium and its growth follows a logarithmic relationship.With further exposure of oxygen, the oxide film grown in the previous stage becomes thicker and the uptake of oxygen reaches saturation at oxygen exposure of 25 L,and the oxide film mainly consists of Ce2O3.展开更多
基金The author would like to express thanks to Professor Jun-yong Kang and Dr. Duan-jun Cai for their valuable discussions. This work was partly supported by the National Nature Science Foundation of China (No.60206030, No.10134030 and No.69976023) and the Natural Science Found of Xiamen University (No.B200337).
文摘An in situ heating system was built for the Auger electron spectroscopy to investigate the thermal effect of Auger lines. A GaN sample was studied in this system. The kinetic energy of Ga LMM and MVV Auger lines were observed to shift negatively with temperature increasing. By using ab initio calculation, the theoretical Ga MVV Auger line shape was fit, which well reflects the inner property of the line. The Auger shift with heating is related with the valence electron rearrangement in the thermal expansion of the local bonds.
基金supported by the Shanghai Science and Technology Plan(No.21DZ2260400)the startup funding from ShanghaiTech University.The electron microscopy characterization was supported by the Center for High-resolution Electron Microscopy(CћEM)at ShanghaiTech University。
文摘Garnet-type oxide solid electrolytes are the critical materials for all-solid-state lithium ion batteries.Nanoscale spectroscopic analysis on solid electrolytes plays a key role in bridging the gap between microstructure and properties.In this work,Auger electron spectroscopy(AES),which can directly detect lithium element and distinguish its valence state,was applied to characterize the garnet-type Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6O12)(LLZTO).Different spectroscopy parameters were evaluated and optimal acquisition conditions were provided.Electron induced precipitation of lithium metal from LLZTO was observed.By exploring the influence factors of precipitation and combining transmission electron microscopy(TEM)and focused ion beam(FIB)experiments,the underlying mechanism of the phenomenon was revealed and previous controversy was resolved.The analysis method was also extended to other types of solid electrolytes,and this work provides a reference for future in-depth research on the structure-property relationship of solid electrolytes using AES.
文摘Auger Electron Spectroscopy was used to characterize the initial stages of the oxidation of Ce-5% La alloy in an oxygen atmosphere at low pressure( ~ 10-6 Pa) and room temperature after the surface is cleaned by Ar+ ion bombardment.It is shown that exposure of clean cerium to oxygen causes the appearance and development of three new Auger peaks at 97,662 and 676 eV, which steadily grow during oxidation of cerium.Upon oxygen dose less than 20 L,a semi-protective layer of oxide forms on the surface of cerium and its growth follows a logarithmic relationship.With further exposure of oxygen, the oxide film grown in the previous stage becomes thicker and the uptake of oxygen reaches saturation at oxygen exposure of 25 L,and the oxide film mainly consists of Ce2O3.