This study comprehensively reviews the literature to deeply explore the role of computer science and internet technologies in addressing educational inequality and socio-psychological issues,with a particular focus on...This study comprehensively reviews the literature to deeply explore the role of computer science and internet technologies in addressing educational inequality and socio-psychological issues,with a particular focus on applications of 5G,artificial intelligence(AI),and augmented/virtual reality(AR/VR).By analyzing how these technologies are reshaping learning and their potential to ameliorate educational disparities,the study reveals challenges present in ensuring educational equity.The research methodology includes exhaustive reviews of applications of AI and machine learning,the Internet of Things and wearable technologies integration,big data analytics and data mining,and the effects of online platforms and social media on socio-psychological issues.Besides,the study discusses applications of these technologies in educational inequality and socio-psychological problem-solving through the lens of 5G,AI,and AR/VR,while also delineating challenges faced by these emerging technologies and future outlooks.The study finds that while computer science and internet technologies hold promise to bridge academic divides and address socio-psychological problems,the complexity of technology access and infrastructure,lack of digital literacy and skills,and critical ethical and privacy issues can impact widespread adoption and efficacy.Overall,the study provides a novel perspective to understand the potential of computer science and internet technologies in ameliorating educational inequality and socio-psychological issues,while pointing to new directions for future research.It also emphasizes the importance of cooperation among educational institutions,technology vendors,policymakers and researchers,and establishing comprehensive ethical guidelines and regulations to ensure the responsible use of these technologies.展开更多
Teaching science through computer games,simulations,and artificial intelligence(AI)is an increasingly active research field.To this end,we conducted a systematic literature review on serious games for science educatio...Teaching science through computer games,simulations,and artificial intelligence(AI)is an increasingly active research field.To this end,we conducted a systematic literature review on serious games for science education to reveal research trends and patterns.We discussed the role of virtual reality(VR),AI,and augmented reality(AR)games in teaching science subjects like physics.Specifically,we covered the research spanning between 2011 and 2021,investigated country-wise concentration and most common evaluation methods,and discussed the positive and negative aspects of serious games in science education in particular and attitudes towards the use of serious games in education in general.展开更多
Computed tomography(CT)generates cross-sectional images of the body.Visualizing CT images has been a challenging problem.The emergence of the augmented and virtual reality technology has provided promising solutions.H...Computed tomography(CT)generates cross-sectional images of the body.Visualizing CT images has been a challenging problem.The emergence of the augmented and virtual reality technology has provided promising solutions.However,existing solutions suffer from tethered display or wireless transmission latency.In this paper,we present ARSlice,a proof-of-concept prototype that can visualize CT images in an untethered manner without wireless transmission latency.Our ARSlice prototype consists of two parts,the user end and the projector end.By employing dynamic tracking and projection,the projector end can track the user-end equipment and project CT images onto it in real time.The user-end equipment is responsible for displaying these CT images into the 3D space.Its main feature is that the user-end equipment is a pure optical device with light weight,low cost,and no energy consumption.Our experiments demonstrate that our ARSlice prototype provides part of six degrees of freedom for the user,and a high frame rate.By interactively visualizing CT images into the 3D space,our ARSlice prototype can help untrained users better understand that CT images are slices of a body.展开更多
Wearable and flexible electronics are shaping our life with their unique advantages of light weight,good compliance,and desirable comfortability.With marching into the era of Internet of Things(IoT),numerous sensor no...Wearable and flexible electronics are shaping our life with their unique advantages of light weight,good compliance,and desirable comfortability.With marching into the era of Internet of Things(IoT),numerous sensor nodes are distributed throughout networks to capture,process,and transmit diverse sensory information,which gives rise to the demand on self-powered sensors to reduce the power consumption.Meanwhile,the rapid development of artificial intelligence(AI)and fifth-generation(5G)technologies provides an opportunity to enable smart-decision making and instantaneous data transmission in IoT systems.Due to continuously increased sensor and dataset number,conventional computing based on von Neumann architecture cannot meet the needs of brain-like high-efficient sensing and computing applications anymore.Neuromorphic electronics,drawing inspiration from the human brain,provide an alternative approach for efficient and low-power-consumption information processing.Hence,this review presents the general technology roadmap of self-powered sensors with detail discussion on their diversified applications in healthcare,human machine interactions,smart homes,etc.Via leveraging AI and virtual reality/augmented reality(VR/AR)techniques,the development of single sensors to intelligent integrated systems is reviewed in terms of step-by-step system integration and algorithm improvement.In order to realize efficient sensing and computing,brain-inspired neuromorphic electronics are next briefly discussed.Last,it concludes and highlights both challenges and opportunities from the aspects of materials,minimization,integration,multimodal information fusion,and artificial sensory system.展开更多
The metaverse is a visual world that blends the physical world and digital world.At present,the development of the metaverse is still in the early stage,and there lacks a framework for the visual construction and expl...The metaverse is a visual world that blends the physical world and digital world.At present,the development of the metaverse is still in the early stage,and there lacks a framework for the visual construction and exploration of the metaverse.In this paper,we propose a framework that summarizes how graphics,interaction,and visualization techniques support the visual construction of the metaverse and user-centric exploration.We introduce three kinds of visual elements that compose the metaverse and the two graphical construction methods in a pipeline.We propose a taxonomy of interaction technologies based on interaction tasks,user actions,feedback and various sensory channels,and a taxonomy of visualization techniques that assist user awareness.Current potential applications and future opportunities are discussed in the context of visual construction and exploration of the metaverse.We hope this paper can provide a stepping stone for further research in the area of graphics,interaction and visualization in the metaverse.展开更多
Recent years have witnessed the rapid development and wide adoption of immersive head-mounted devices,such as HTC VIVE,Oculus Rift,and Microsoft HoloLens.These immersive devices have the potential to significantly ext...Recent years have witnessed the rapid development and wide adoption of immersive head-mounted devices,such as HTC VIVE,Oculus Rift,and Microsoft HoloLens.These immersive devices have the potential to significantly extend the methodology of urban visual analytics by providing critical 3D context information and creating a sense of presence.In this paper,we propose a theoretical model to characterize the visualizations in immersive urban analytics.Furthermore,based on our comprehensive and concise model,we contribute a typology of combination methods of 2D and 3D visualizations that distinguishes between linked views,embedded views,and mixed views.We also propose a supporting guideline to assist users in selecting a proper view under certain circumstances by considering visual geometry and spatial distribution of the 2D and 3D visualizations.Finally,based on existing work,possible future research opportunities are explored and discussed.展开更多
文摘This study comprehensively reviews the literature to deeply explore the role of computer science and internet technologies in addressing educational inequality and socio-psychological issues,with a particular focus on applications of 5G,artificial intelligence(AI),and augmented/virtual reality(AR/VR).By analyzing how these technologies are reshaping learning and their potential to ameliorate educational disparities,the study reveals challenges present in ensuring educational equity.The research methodology includes exhaustive reviews of applications of AI and machine learning,the Internet of Things and wearable technologies integration,big data analytics and data mining,and the effects of online platforms and social media on socio-psychological issues.Besides,the study discusses applications of these technologies in educational inequality and socio-psychological problem-solving through the lens of 5G,AI,and AR/VR,while also delineating challenges faced by these emerging technologies and future outlooks.The study finds that while computer science and internet technologies hold promise to bridge academic divides and address socio-psychological problems,the complexity of technology access and infrastructure,lack of digital literacy and skills,and critical ethical and privacy issues can impact widespread adoption and efficacy.Overall,the study provides a novel perspective to understand the potential of computer science and internet technologies in ameliorating educational inequality and socio-psychological issues,while pointing to new directions for future research.It also emphasizes the importance of cooperation among educational institutions,technology vendors,policymakers and researchers,and establishing comprehensive ethical guidelines and regulations to ensure the responsible use of these technologies.
文摘Teaching science through computer games,simulations,and artificial intelligence(AI)is an increasingly active research field.To this end,we conducted a systematic literature review on serious games for science education to reveal research trends and patterns.We discussed the role of virtual reality(VR),AI,and augmented reality(AR)games in teaching science subjects like physics.Specifically,we covered the research spanning between 2011 and 2021,investigated country-wise concentration and most common evaluation methods,and discussed the positive and negative aspects of serious games in science education in particular and attitudes towards the use of serious games in education in general.
基金the National Natural Science Foundation of China under Grant No.61872210the Guangdong Basic and Applied Basic Research Foundation under Grant Nos.2021A1515012596 and 2021B1515120064the Guangdong Academy of Sciences Special Foundation under Grant No.2021GDASYL-20210102006.
文摘Computed tomography(CT)generates cross-sectional images of the body.Visualizing CT images has been a challenging problem.The emergence of the augmented and virtual reality technology has provided promising solutions.However,existing solutions suffer from tethered display or wireless transmission latency.In this paper,we present ARSlice,a proof-of-concept prototype that can visualize CT images in an untethered manner without wireless transmission latency.Our ARSlice prototype consists of two parts,the user end and the projector end.By employing dynamic tracking and projection,the projector end can track the user-end equipment and project CT images onto it in real time.The user-end equipment is responsible for displaying these CT images into the 3D space.Its main feature is that the user-end equipment is a pure optical device with light weight,low cost,and no energy consumption.Our experiments demonstrate that our ARSlice prototype provides part of six degrees of freedom for the user,and a high frame rate.By interactively visualizing CT images into the 3D space,our ARSlice prototype can help untrained users better understand that CT images are slices of a body.
基金supported by the Reimagine Research Scheme(RRSC)grant(“Scalable AI Phenome Platform towards Fast-Forward Plant Breeding(Sensor)”,Nos.A-0009037-02-00 and A-0009037-03-00)at NUS,Singaporethe Reimagine Research Scheme(RRSC)grant(“Under-utilised Potential of Micro-biomes(soil)in Sustainable Urban Agriculture”,No.A-0009454-01-00)at NUS,Singaporethe RIE advanced manufacturing and engineering(AME)programmatic grant(“Nanosystems at the Edge”,No.A18A4b0055)at NUS,Singapore.
文摘Wearable and flexible electronics are shaping our life with their unique advantages of light weight,good compliance,and desirable comfortability.With marching into the era of Internet of Things(IoT),numerous sensor nodes are distributed throughout networks to capture,process,and transmit diverse sensory information,which gives rise to the demand on self-powered sensors to reduce the power consumption.Meanwhile,the rapid development of artificial intelligence(AI)and fifth-generation(5G)technologies provides an opportunity to enable smart-decision making and instantaneous data transmission in IoT systems.Due to continuously increased sensor and dataset number,conventional computing based on von Neumann architecture cannot meet the needs of brain-like high-efficient sensing and computing applications anymore.Neuromorphic electronics,drawing inspiration from the human brain,provide an alternative approach for efficient and low-power-consumption information processing.Hence,this review presents the general technology roadmap of self-powered sensors with detail discussion on their diversified applications in healthcare,human machine interactions,smart homes,etc.Via leveraging AI and virtual reality/augmented reality(VR/AR)techniques,the development of single sensors to intelligent integrated systems is reviewed in terms of step-by-step system integration and algorithm improvement.In order to realize efficient sensing and computing,brain-inspired neuromorphic electronics are next briefly discussed.Last,it concludes and highlights both challenges and opportunities from the aspects of materials,minimization,integration,multimodal information fusion,and artificial sensory system.
基金Shanghai Municipal Science and Technology Major Project(No.2018SHZDZX01,2021SHZDZX0103)and ZJLab.This work is also supported by Shanghai Sailing Program No.21YF1402900,Science and Technology Commission of Shanghai Municipality(Grant No.21ZR1403300)+1 种基金by Open Research Fund of Beijing Key Laboratory of Big Data Technology for Food Safety(Project No.BTBD-2021KF03)Beijing Technology and Business University and NSFC No.61972010.
文摘The metaverse is a visual world that blends the physical world and digital world.At present,the development of the metaverse is still in the early stage,and there lacks a framework for the visual construction and exploration of the metaverse.In this paper,we propose a framework that summarizes how graphics,interaction,and visualization techniques support the visual construction of the metaverse and user-centric exploration.We introduce three kinds of visual elements that compose the metaverse and the two graphical construction methods in a pipeline.We propose a taxonomy of interaction technologies based on interaction tasks,user actions,feedback and various sensory channels,and a taxonomy of visualization techniques that assist user awareness.Current potential applications and future opportunities are discussed in the context of visual construction and exploration of the metaverse.We hope this paper can provide a stepping stone for further research in the area of graphics,interaction and visualization in the metaverse.
基金The work was supported by National 973 Program of China(2015CB352503)National Natural Science Foundation of China(61772456,U1609217)+5 种基金NSFC-Zhejiang Joint Fund for the Integration of Industrialization and Informatization(U1609217)NSFC(61502416)Zhejiang Provincial Natural Science Foundation(LR18F020001)the Fundamental Research Funds for Central Universities(2016QNA5014)the research fund of the Ministry of Education of China(188170-170160502)the 100 Talents Program of Zhejiang University.This project is also partially funded by Microsoft Research Asia.
文摘Recent years have witnessed the rapid development and wide adoption of immersive head-mounted devices,such as HTC VIVE,Oculus Rift,and Microsoft HoloLens.These immersive devices have the potential to significantly extend the methodology of urban visual analytics by providing critical 3D context information and creating a sense of presence.In this paper,we propose a theoretical model to characterize the visualizations in immersive urban analytics.Furthermore,based on our comprehensive and concise model,we contribute a typology of combination methods of 2D and 3D visualizations that distinguishes between linked views,embedded views,and mixed views.We also propose a supporting guideline to assist users in selecting a proper view under certain circumstances by considering visual geometry and spatial distribution of the 2D and 3D visualizations.Finally,based on existing work,possible future research opportunities are explored and discussed.