Nanoparticles(NPs)have gained significant attention as a functional material due to their ability to effectively enhance pressure reduction in injection processes in ultra-low permeability reservoirs.NPs are typically...Nanoparticles(NPs)have gained significant attention as a functional material due to their ability to effectively enhance pressure reduction in injection processes in ultra-low permeability reservoirs.NPs are typically studied in controlled laboratory conditions,and their behavior in real-world,complex environments such as ultra-low permeability reservoirs,is not well understood due to the limited scope of their applications.This study investigates the efficacy and underlying mechanisms of NPs in decreasing injection pressure under various injection conditions(25—85℃,10—25 MPa).The results reveal that under optimal injection conditions,NPs effectively reduce injection pressure by a maximum of 22.77%in core experiment.The pressure reduction rate is found to be positively correlated with oil saturation and permeability,and negatively correlated with temperature and salinity.Furthermore,particle image velocimetry(PIV)experiments(25℃,atmospheric pressure)indicate that the pressure reduction is achieved by NPs through the reduction of wall shear resistance and wettability change.This work has important implications for the design of water injection strategies in ultra-low permeability reservoirs.展开更多
Six degrees of freedom(6DoF)input interfaces are essential formanipulating virtual objects through translation or rotation in three-dimensional(3D)space.A traditional outside-in tracking controller requires the instal...Six degrees of freedom(6DoF)input interfaces are essential formanipulating virtual objects through translation or rotation in three-dimensional(3D)space.A traditional outside-in tracking controller requires the installation of expensive hardware in advance.While inside-out tracking controllers have been proposed,they often suffer from limitations such as interaction limited to the tracking range of the sensor(e.g.,a sensor on the head-mounted display(HMD))or the need for pose value modification to function as an input interface(e.g.,a sensor on the controller).This study investigates 6DoF pose estimation methods without restricting the tracking range,using a smartphone as a controller in augmented reality(AR)environments.Our approach involves proposing methods for estimating the initial pose of the controller and correcting the pose using an inside-out tracking approach.In addition,seven pose estimation algorithms were presented as candidates depending on the tracking range of the device sensor,the tracking method(e.g.,marker recognition,visual-inertial odometry(VIO)),and whether modification of the initial pose is necessary.Through two experiments(discrete and continuous data),the performance of the algorithms was evaluated.The results demonstrate enhanced final pose accuracy achieved by correcting the initial pose.Furthermore,the importance of selecting the tracking algorithm based on the tracking range of the devices and the actual input value of the 3D interaction was emphasized.展开更多
Overtaking is a crucial maneuver in road transportation that requires a clear view of the road ahead.However,limited visibility of ahead vehicles can often make it challenging for drivers to assess the safety of overt...Overtaking is a crucial maneuver in road transportation that requires a clear view of the road ahead.However,limited visibility of ahead vehicles can often make it challenging for drivers to assess the safety of overtaking maneuvers,leading to accidents and fatalities.In this paper,we consider atrous convolution,a powerful tool for explicitly adjusting the field-of-view of a filter as well as controlling the resolution of feature responses generated by Deep Convolutional Neural Networks in the context of semantic image segmentation.This article explores the potential of seeing-through vehicles as a solution to enhance overtaking safety.See-through vehicles leverage advanced technologies such as cameras,sensors,and displays to provide drivers with a real-time view of the vehicle ahead,including the areas hidden from their direct line of sight.To address the problems of safe passing and occlusion by huge vehicles,we designed a see-through vehicle system in this study,we employed a windshield display in the back car together with cameras in both cars.The server within the back car was used to segment the car,and the segmented portion of the car displayed the video from the front car.Our see-through system improves the driver’s field of vision and helps him change lanes,cross a large car that is blocking their view,and safely overtake other vehicles.Our network was trained and tested on the Cityscape dataset using semantic segmentation.This transparent technique will instruct the driver on the concealed traffic situation that the front vehicle has obscured.For our findings,we have achieved 97.1% F1-score.The article also discusses the challenges and opportunities of implementing see-through vehicles in real-world scenarios,including technical,regulatory,and user acceptance factors.展开更多
BACKGROUND Computer-assisted systems obtained an increased interest in orthopaedic surgery over the last years,as they enhance precision compared to conventional hardware.The expansion of computer assistance is evolvi...BACKGROUND Computer-assisted systems obtained an increased interest in orthopaedic surgery over the last years,as they enhance precision compared to conventional hardware.The expansion of computer assistance is evolving with the employment of augmented reality.Yet,the accuracy of augmented reality navigation systems has not been determined.AIM To examine the accuracy of component alignment and restoration of the affected limb’s mechanical axis in primary total knee arthroplasty(TKA),utilizing an augmented reality navigation system and to assess whether such systems are conspicuously fruitful for an accomplished knee surgeon.METHODS From May 2021 to December 2021,30 patients,25 women and five men,under-went a primary unilateral TKA.Revision cases were excluded.A preoperative radiographic procedure was performed to evaluate the limb’s axial alignment.All patients were operated on by the same team,without a tourniquet,utilizing three distinct prostheses with the assistance of the Knee+™augmented reality navigation system in every operation.Postoperatively,the same radiographic exam protocol was executed to evaluate the implants’position,orientation and coronal plane alignment.We recorded measurements in 3 stages regarding femoral varus and flexion,tibial varus and posterior slope.Firstly,the expected values from the Augmented Reality system were documented.Then we calculated the same values after each cut and finally,the same measurements were recorded radiolo-gically after the operations.Concerning statistical analysis,Lin’s concordance correlation coefficient was estimated,while Wilcoxon Signed Rank Test was performed when needed.RESULTS A statistically significant difference was observed regarding mean expected values and radiographic mea-surements for femoral flexion measurements only(Z score=2.67,P value=0.01).Nonetheless,this difference was statistically significantly lower than 1 degree(Z score=-4.21,P value<0.01).In terms of discrepancies in the calculations of expected values and controlled measurements,a statistically significant difference between tibial varus values was detected(Z score=-2.33,P value=0.02),which was also statistically significantly lower than 1 degree(Z score=-4.99,P value<0.01).CONCLUSION The results indicate satisfactory postoperative coronal alignment without outliers across all three different implants utilized.Augmented reality navigation systems can bolster orthopaedic surgeons’accuracy in achieving precise axial alignment.However,further research is required to further evaluate their efficacy and potential.展开更多
Background A task assigned to space exploration satellites involves detecting the physical environment within a certain space.However,space detection data are complex and abstract.These data are not conducive for rese...Background A task assigned to space exploration satellites involves detecting the physical environment within a certain space.However,space detection data are complex and abstract.These data are not conducive for researchers'visual perceptions of the evolution and interaction of events in the space environment.Methods A time-series dynamic data sampling method for large-scale space was proposed for sample detection data in space and time,and the corresponding relationships between data location features and other attribute features were established.A tone-mapping method based on statistical histogram equalization was proposed and applied to the final attribute feature data.The visualization process is optimized for rendering by merging materials,reducing the number of patches,and performing other operations.Results The results of sampling,feature extraction,and uniform visualization of the detection data of complex types,long duration spans,and uneven spatial distributions were obtained.The real-time visualization of large-scale spatial structures using augmented reality devices,particularly low-performance devices,was also investigated.Conclusions The proposed visualization system can reconstruct the three-dimensional structure of a large-scale space,express the structure and changes in the spatial environment using augmented reality,and assist in intuitively discovering spatial environmental events and evolutionary rules.展开更多
The impact of augmented reality(AR)technology on consumer behavior has increasingly attracted academic attention.While early research has provided valuable insights,many challenges remain.This article reviews recent s...The impact of augmented reality(AR)technology on consumer behavior has increasingly attracted academic attention.While early research has provided valuable insights,many challenges remain.This article reviews recent studies,analyzing AR’s technical features,marketing concepts,and action mechanisms from a consumer perspective.By refining existing frameworks and introducing a new model based on situation awareness theory,the paper offers a deeper exploration of AR marketing.Finally,it proposes directions for future research in this emerging field.展开更多
Augmented-and mixed-reality technologies have pioneered the realization of real-time fusion and interactive projection for laparoscopic surgeries.Indocyanine green fluorescence imaging technology has enabled anatomica...Augmented-and mixed-reality technologies have pioneered the realization of real-time fusion and interactive projection for laparoscopic surgeries.Indocyanine green fluorescence imaging technology has enabled anatomical,functional,and radical hepatectomy through tumor identification and localization of target hepatic segments,driving a transformative shift in themanagement of hepatic surgical diseases,moving away from traditional,empirical diagnostic and treatment approaches toward digital,intelligent ones.The Hepatic Surgery Group of the Surgery Branch of the Chinese Medical Association,Digital Medicine Branch of the Chinese Medical Association,Digital Intelligent Surgery Committee of the Chinese Society of ResearchHospitals,and Liver Cancer Committee of the Chinese Medical Doctor Association organized the relevant experts in China to formulate this consensus.This consensus provides a comprehensive outline of the principles,advantages,processes,and key considerations associated with the application of augmented reality and mixed-reality technology combined with indocyanine green fluorescence imaging technology for hepatic segmental and subsegmental resection.The purpose is to streamline and standardize the application of these technologies.展开更多
Mg alloys possess an inherent plastic anisotropy owing to the selective activation of deformation mechanisms depending on the loading condition.This characteristic results in a diverse range of flow curves that vary w...Mg alloys possess an inherent plastic anisotropy owing to the selective activation of deformation mechanisms depending on the loading condition.This characteristic results in a diverse range of flow curves that vary with a deformation condition.This study proposes a novel approach for accurately predicting an anisotropic deformation behavior of wrought Mg alloys using machine learning(ML)with data augmentation.The developed model combines four key strategies from data science:learning the entire flow curves,generative adversarial networks(GAN),algorithm-driven hyperparameter tuning,and gated recurrent unit(GRU)architecture.The proposed model,namely GAN-aided GRU,was extensively evaluated for various predictive scenarios,such as interpolation,extrapolation,and a limited dataset size.The model exhibited significant predictability and improved generalizability for estimating the anisotropic compressive behavior of ZK60 Mg alloys under 11 annealing conditions and for three loading directions.The GAN-aided GRU results were superior to those of previous ML models and constitutive equations.The superior performance was attributed to hyperparameter optimization,GAN-based data augmentation,and the inherent predictivity of the GRU for extrapolation.As a first attempt to employ ML techniques other than artificial neural networks,this study proposes a novel perspective on predicting the anisotropic deformation behaviors of wrought Mg alloys.展开更多
Augmented solar images were used to research the adaptability of four representative image extraction and matching algorithms in space weather domain.These include the scale-invariant feature transform algorithm,speed...Augmented solar images were used to research the adaptability of four representative image extraction and matching algorithms in space weather domain.These include the scale-invariant feature transform algorithm,speeded-up robust features algorithm,binary robust invariant scalable keypoints algorithm,and oriented fast and rotated brief algorithm.The performance of these algorithms was estimated in terms of matching accuracy,feature point richness,and running time.The experiment result showed that no algorithm achieved high accuracy while keeping low running time,and all algorithms are not suitable for image feature extraction and matching of augmented solar images.To solve this problem,an improved method was proposed by using two-frame matching to utilize the accuracy advantage of the scale-invariant feature transform algorithm and the speed advantage of the oriented fast and rotated brief algorithm.Furthermore,our method and the four representative algorithms were applied to augmented solar images.Our application experiments proved that our method achieved a similar high recognition rate to the scale-invariant feature transform algorithm which is significantly higher than other algorithms.Our method also obtained a similar low running time to the oriented fast and rotated brief algorithm,which is significantly lower than other algorithms.展开更多
Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal depende...Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal dependence,and noise.Therefore,methodologies for data augmentation and conversion of time series data into images for analysis have been studied.This paper proposes a fault detection model that uses time series data augmentation and transformation to address the problems of data imbalance,temporal dependence,and robustness to noise.The method of data augmentation is set as the addition of noise.It involves adding Gaussian noise,with the noise level set to 0.002,to maximize the generalization performance of the model.In addition,we use the Markov Transition Field(MTF)method to effectively visualize the dynamic transitions of the data while converting the time series data into images.It enables the identification of patterns in time series data and assists in capturing the sequential dependencies of the data.For anomaly detection,the PatchCore model is applied to show excellent performance,and the detected anomaly areas are represented as heat maps.It allows for the detection of anomalies,and by applying an anomaly map to the original image,it is possible to capture the areas where anomalies occur.The performance evaluation shows that both F1-score and Accuracy are high when time series data is converted to images.Additionally,when processed as images rather than as time series data,there was a significant reduction in both the size of the data and the training time.The proposed method can provide an important springboard for research in the field of anomaly detection using time series data.Besides,it helps solve problems such as analyzing complex patterns in data lightweight.展开更多
Wireless smart sensors(WSS)process field data and inform inspectors about the infrastructure health and safety.In bridge engineering,inspectors need reliable data about changes in displacements under loads to make cor...Wireless smart sensors(WSS)process field data and inform inspectors about the infrastructure health and safety.In bridge engineering,inspectors need reliable data about changes in displacements under loads to make correct decisions about repairs and replacements.Access to displacement information in the field and in real-time remains a challenge as inspectors do not see the data in real time.Displacement data from WSS in the field undergoes additional processing and is seen at a different location.If inspectors were able to see structural displacements in real-time at the locations of interest,they could conduct additional observations,creating a new,information-based,decision-making reality in the field.This paper develops a new,human-centered interface that provides inspectors with real-time access to actionable structural data during inspection and monitoring enhanced by augmented reality(AR).It summarizes and evaluates the development and validation of the new human-infrastructure interface in laboratory experiments.The experiments demonstrate that the interface that processes all calculations in the AR device accurately estimates dynamic displacements in comparison with the laser.Using this new AR interface tool,inspectors can observe and compare displacement data,share it across space and time,visualize displacements in time history,and understand structural deflection more accurately through a displacement time history visualization.展开更多
Objective:To evaluate the accuracy of our new three-dimensional(3D)automatic augmented reality(AAR)system guided by artificial intelligence in the identification of tumour’s location at the level of the preserved neu...Objective:To evaluate the accuracy of our new three-dimensional(3D)automatic augmented reality(AAR)system guided by artificial intelligence in the identification of tumour’s location at the level of the preserved neurovascular bundle(NVB)at the end of the extirpative phase of nerve-sparing robot-assisted radical prostatectomy.Methods:In this prospective study,we enrolled patients with prostate cancer(clinical stages cT1ce3,cN0,and cM0)with a positive index lesion at target biopsy,suspicious for capsular contact or extracapsular extension at preoperative multiparametric magnetic resonance imaging.Patients underwent robot-assisted radical prostatectomy at San Luigi Gonzaga Hospital(Orbassano,Turin,Italy),from December 2020 to December 2021.At the end of extirpative phase,thanks to our new AAR artificial intelligence driven system,the virtual prostate 3D model allowed to identify the tumour’s location at the level of the preserved NVB and to perform a selective excisional biopsy,sparing the remaining portion of the bundle.Perioperative and postoperative data were evaluated,especially focusing on the positive surgical margin(PSM)rates,potency,continence recovery,and biochemical recurrence.Results:Thirty-four patients were enrolled.In 15(44.1%)cases,the target lesion was in contact with the prostatic capsule at multiparametric magnetic resonance imaging(Wheeler grade L2)while in 19(55.9%)cases extracapsular extension was detected(Wheeler grade L3).3D AAR guided biopsies were negative in all pathological tumour stage 2(pT2)patients while they revealed the presence of cancer in 14 cases in the pT3 cohort(14/16;87.5%).PSM rates were 0%and 7.1%in the pathological stages pT2 and pT3(<3 mm,Gleason score 3),respectively.Conclusion:With the proposed 3D AAR system,it is possible to correctly identify the lesion’s location on the NVB in 87.5%of pT3 patients and perform a 3D-guided tailored nerve-sparing even in locally advanced diseases,without compromising the oncological safety in terms of PSM rates.展开更多
Visual inspection is commonly adopted for building operation,maintenance,and safety.The durability and defects of components or materials in buildings can be quickly assessed through visual inspection.However,implemen...Visual inspection is commonly adopted for building operation,maintenance,and safety.The durability and defects of components or materials in buildings can be quickly assessed through visual inspection.However,implementations of visual inspection are substantially time-consuming,labor-intensive,and error-prone because useful auxiliary tools that can instantly highlight defects or damage locations from images are not available.Therefore,an advanced building inspection framework is developed and implemented with augmented reality(AR)and real-time damage detection in this study.In this framework,engineers should walk around and film every corner of the building interior to generate the three-dimensional(3D)environment through ARKit.Meanwhile,a trained YOLOv5 model real-time detects defects during this process,even in a large-scale field,and the defect locations indicating the detected defects are then marked in this 3D environment.The defects areas can be measured with centimeter-level accuracy with the light detection and ranging(LiDAR)on devices.All required damage information,including defect positions and sizes,is collected at a time and can be rendered in the 2D and 3D views.Finally,this visual inspection can be efficiently conducted,and the previously generated environment can also be loaded to re-localize existing defect marks for future maintenance and change observation.Moreover,the proposed framework is also implemented and verified by an underground parking lot in a building to detect and quantify surface defects on concrete components.As seen in the results,the conventional building inspection is significantly improved with the aid of the proposed framework in terms of damage localization,damage quantification,and inspection efficiency.展开更多
The purpose of the Combined Economic Emission Dispatch(CEED)of electric power is to offer the most exceptional schedule for production units,which must run with both low fuel costs and emission levels concurrently,the...The purpose of the Combined Economic Emission Dispatch(CEED)of electric power is to offer the most exceptional schedule for production units,which must run with both low fuel costs and emission levels concurrently,thereby meeting the lack of system equality and inequality constraints.Economic and emissions dispatching has become a primary and significant concern in power system networks.Consequences of using non-renewable fuels as input to exhaust power systems with toxic gas emissions and depleted resources for future generations.The optimal power allocation to generators serves as a solution to this problem.Emission dispatch reduces emissions while ignoring economic considerations.A collective strategy known as Combined Economic and Emission Dispatch is utilized to resolve the above-mentioned problems and investigate the trade-off relationship between fuel cost and emissions.Consequently,this work manages the Substantial Augmented Transformative Algorithm(SATA)to take care of the Combined Economic Emission Dispatch Problem(CEEDP)of warm units while fulfilling imperatives,for example,confines on generator limit,diminish the fuel cost,lessen the emission and decrease the force misfortune.SATA is a stochastic streamlining process that relies upon the development and knowledge of swarms.The goal is to minimize the total fuel cost of fossil-based thermal power generation units that generate and cause environmental pollution.The algorithm searches for solutions in the search space from the smallest to the largest in the case of forwarding search.The simulation of the proposed system is developed using MATLAB Simulink software.Simulation results show the effectiveness and practicability of this method in terms of economic and emission dispatching issues.The performance of the proposed system is compared with existing Artificial Bee Colony-Particle Swarm Optimization(ABC-PSO),Simulated Annealing(SA),and Differential Evolution(DE)methods.The fuel cost and gas emission of the proposed system are 128904$/hr and 138094.4652$/hr.展开更多
In response to the construction needs of “Real 3D China”, the system structure, functional framework, application direction and product form of block level augmented reality three-dimensional map is designed. Those ...In response to the construction needs of “Real 3D China”, the system structure, functional framework, application direction and product form of block level augmented reality three-dimensional map is designed. Those provide references and ideas for the later large-scale production of augmented reality three-dimensional map. The augmented reality three-dimensional map is produced based on skyline software. Including the map browsing, measurement and analysis and so on, the basic function of three-dimensional map is realized. The special functional module including housing management, pipeline management and so on is developed combining the need of residential quarters development, that expands the application fields of augmented reality three-dimensional map. Those lay the groundwork for the application of augmented reality three-dimensional map. .展开更多
Augmented Reality(AR)tries to seamlessly integrate virtual content into the real world of the user.Ideally,the virtual content would behave exactly like real objects.This necessitates a correct and precise estimation ...Augmented Reality(AR)tries to seamlessly integrate virtual content into the real world of the user.Ideally,the virtual content would behave exactly like real objects.This necessitates a correct and precise estimation of the user’s viewpoint(or that of a camera)with regard to the virtual content’s coordinate sys-tem.Therefore,the real-time establishment of 3-dimension(3D)maps in real scenes is particularly important for augmented reality technology.So in this paper,we integrate Simultaneous Localization and Mapping(SLAM)technology into augmented reality.Our research is to implement an augmented reality system without markers using the ORB-SLAM2 framework algorithm.In this paper we propose an improved method for Oriented FAST and Rotated BRIEF(ORB)feature extraction and optimized key frame selection,as well as the use of the Progressive Sample Consensus(PROSAC)algorithm for planar estimation of augmented reality implementations,thus solving the problem of increased sys-tem runtime because of the loss of large amounts of texture information in images.In this paper,we get better results by comparing experiments and data analysis.However,there are some improved methods of PROSAC algorithm which are more suitable for the detection of plane feature points.展开更多
The curse of dimensionality refers to the problem o increased sparsity and computational complexity when dealing with high-dimensional data.In recent years,the types and vari ables of industrial data have increased si...The curse of dimensionality refers to the problem o increased sparsity and computational complexity when dealing with high-dimensional data.In recent years,the types and vari ables of industrial data have increased significantly,making data driven models more challenging to develop.To address this prob lem,data augmentation technology has been introduced as an effective tool to solve the sparsity problem of high-dimensiona industrial data.This paper systematically explores and discusses the necessity,feasibility,and effectiveness of augmented indus trial data-driven modeling in the context of the curse of dimen sionality and virtual big data.Then,the process of data augmen tation modeling is analyzed,and the concept of data boosting augmentation is proposed.The data boosting augmentation involves designing the reliability weight and actual-virtual weigh functions,and developing a double weighted partial least squares model to optimize the three stages of data generation,data fusion and modeling.This approach significantly improves the inter pretability,effectiveness,and practicality of data augmentation in the industrial modeling.Finally,the proposed method is verified using practical examples of fault diagnosis systems and virtua measurement systems in the industry.The results demonstrate the effectiveness of the proposed approach in improving the accu racy and robustness of data-driven models,making them more suitable for real-world industrial applications.展开更多
Background With an increasing number of vehicles becoming autonomous,intelligent,and connected,paying attention to the future usage of car human-machine interface with these vehicles should become more relevant.Severa...Background With an increasing number of vehicles becoming autonomous,intelligent,and connected,paying attention to the future usage of car human-machine interface with these vehicles should become more relevant.Several studies have addressed car HMI but were less attentive to designing and implementing interactive glazing for every day(autonomous)driving contexts.Methods Reflecting on the literature,we describe an engineering psychology practice and the design of six novel future user scenarios,which envision the application of a specific set of augmented reality(AR)support user interactions.Additionally,we conduct evaluations on specific scenarios and experiential prototypes,which reveal that these AR scenarios aid the target user groups in experiencing a new type of interaction.The overall evaluation is positive with valuable assessment results and suggestions.Conclusions This study can interest applied psychology educators who aspire to teach how AR can be operationalized in a human-centered design process to students with minimal pre-existing expertise or minimal scientific knowledge in engineering psychology.展开更多
Depth estimation is an important task in computer vision.Collecting data at scale for monocular depth estimation is challenging,as this task requires simultaneously capturing RGB images and depth information.Therefore...Depth estimation is an important task in computer vision.Collecting data at scale for monocular depth estimation is challenging,as this task requires simultaneously capturing RGB images and depth information.Therefore,data augmentation is crucial for this task.Existing data augmentationmethods often employ pixel-wise transformations,whichmay inadvertently disrupt edge features.In this paper,we propose a data augmentationmethod formonocular depth estimation,which we refer to as the Perpendicular-Cutdepth method.This method involves cutting realworld depth maps along perpendicular directions and pasting them onto input images,thereby diversifying the data without compromising edge features.To validate the effectiveness of the algorithm,we compared it with existing convolutional neural network(CNN)against the current mainstream data augmentation algorithms.Additionally,to verify the algorithm’s applicability to Transformer networks,we designed an encoder-decoder network structure based on Transformer to assess the generalization of our proposed algorithm.Experimental results demonstrate that,in the field of monocular depth estimation,our proposed method,Perpendicular-Cutdepth,outperforms traditional data augmentationmethods.On the indoor dataset NYU,our method increases accuracy from0.900 to 0.907 and reduces the error rate from0.357 to 0.351.On the outdoor dataset KITTI,our method improves accuracy from 0.9638 to 0.9642 and decreases the error rate from 0.060 to 0.0598.展开更多
With the advent of the information age,augmented reality technology can enhance the sense of reality in the virtual world and immerse people in the real and virtual world.People have always been interested in virtual ...With the advent of the information age,augmented reality technology can enhance the sense of reality in the virtual world and immerse people in the real and virtual world.People have always been interested in virtual space or augmented reality technology,especially in the face of historical development trends.Museums have always been open to the public,they are not just a collection,but also an exhibition for the public.Through analyzing different museums,it is found that museums with augmented reality technology exhibitions are non-profit museums for the purpose of emotional experience.In order to find out the immersion factors of virtual reality in museums,on the basis of previous research,this paper divides immersion in augmented reality into story immersion,five-sense experience immersion,and spatial interaction immersion.Through the analysis of different museums,it is found that immersion through five-sense experience is the most commonly used method when all display media are included.This method provides educational content for museum visitors and projects virtual presentations through monitors and portable IT devices,thereby increasing visitors’viewing pleasure.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52074249,U1663206,52204069)Fundamental Research Funds for the Central Universities。
文摘Nanoparticles(NPs)have gained significant attention as a functional material due to their ability to effectively enhance pressure reduction in injection processes in ultra-low permeability reservoirs.NPs are typically studied in controlled laboratory conditions,and their behavior in real-world,complex environments such as ultra-low permeability reservoirs,is not well understood due to the limited scope of their applications.This study investigates the efficacy and underlying mechanisms of NPs in decreasing injection pressure under various injection conditions(25—85℃,10—25 MPa).The results reveal that under optimal injection conditions,NPs effectively reduce injection pressure by a maximum of 22.77%in core experiment.The pressure reduction rate is found to be positively correlated with oil saturation and permeability,and negatively correlated with temperature and salinity.Furthermore,particle image velocimetry(PIV)experiments(25℃,atmospheric pressure)indicate that the pressure reduction is achieved by NPs through the reduction of wall shear resistance and wettability change.This work has important implications for the design of water injection strategies in ultra-low permeability reservoirs.
文摘Six degrees of freedom(6DoF)input interfaces are essential formanipulating virtual objects through translation or rotation in three-dimensional(3D)space.A traditional outside-in tracking controller requires the installation of expensive hardware in advance.While inside-out tracking controllers have been proposed,they often suffer from limitations such as interaction limited to the tracking range of the sensor(e.g.,a sensor on the head-mounted display(HMD))or the need for pose value modification to function as an input interface(e.g.,a sensor on the controller).This study investigates 6DoF pose estimation methods without restricting the tracking range,using a smartphone as a controller in augmented reality(AR)environments.Our approach involves proposing methods for estimating the initial pose of the controller and correcting the pose using an inside-out tracking approach.In addition,seven pose estimation algorithms were presented as candidates depending on the tracking range of the device sensor,the tracking method(e.g.,marker recognition,visual-inertial odometry(VIO)),and whether modification of the initial pose is necessary.Through two experiments(discrete and continuous data),the performance of the algorithms was evaluated.The results demonstrate enhanced final pose accuracy achieved by correcting the initial pose.Furthermore,the importance of selecting the tracking algorithm based on the tracking range of the devices and the actual input value of the 3D interaction was emphasized.
基金financially supported by the Ministry of Trade,Industry and Energy(MOTIE)and Korea Institute for Advancement of Technology(KIAT)through the International Cooperative R&D Program(Project No.P0016038)supported by the MSIT(Ministry of Sci-ence and ICT),Korea,under the ITRC(Information Technology Research Center)support program(IITP-2022-RS-2022-00156354)supervised by the IITP(Institute for Information&Communications Technology Planning&Evaluation).
文摘Overtaking is a crucial maneuver in road transportation that requires a clear view of the road ahead.However,limited visibility of ahead vehicles can often make it challenging for drivers to assess the safety of overtaking maneuvers,leading to accidents and fatalities.In this paper,we consider atrous convolution,a powerful tool for explicitly adjusting the field-of-view of a filter as well as controlling the resolution of feature responses generated by Deep Convolutional Neural Networks in the context of semantic image segmentation.This article explores the potential of seeing-through vehicles as a solution to enhance overtaking safety.See-through vehicles leverage advanced technologies such as cameras,sensors,and displays to provide drivers with a real-time view of the vehicle ahead,including the areas hidden from their direct line of sight.To address the problems of safe passing and occlusion by huge vehicles,we designed a see-through vehicle system in this study,we employed a windshield display in the back car together with cameras in both cars.The server within the back car was used to segment the car,and the segmented portion of the car displayed the video from the front car.Our see-through system improves the driver’s field of vision and helps him change lanes,cross a large car that is blocking their view,and safely overtake other vehicles.Our network was trained and tested on the Cityscape dataset using semantic segmentation.This transparent technique will instruct the driver on the concealed traffic situation that the front vehicle has obscured.For our findings,we have achieved 97.1% F1-score.The article also discusses the challenges and opportunities of implementing see-through vehicles in real-world scenarios,including technical,regulatory,and user acceptance factors.
文摘BACKGROUND Computer-assisted systems obtained an increased interest in orthopaedic surgery over the last years,as they enhance precision compared to conventional hardware.The expansion of computer assistance is evolving with the employment of augmented reality.Yet,the accuracy of augmented reality navigation systems has not been determined.AIM To examine the accuracy of component alignment and restoration of the affected limb’s mechanical axis in primary total knee arthroplasty(TKA),utilizing an augmented reality navigation system and to assess whether such systems are conspicuously fruitful for an accomplished knee surgeon.METHODS From May 2021 to December 2021,30 patients,25 women and five men,under-went a primary unilateral TKA.Revision cases were excluded.A preoperative radiographic procedure was performed to evaluate the limb’s axial alignment.All patients were operated on by the same team,without a tourniquet,utilizing three distinct prostheses with the assistance of the Knee+™augmented reality navigation system in every operation.Postoperatively,the same radiographic exam protocol was executed to evaluate the implants’position,orientation and coronal plane alignment.We recorded measurements in 3 stages regarding femoral varus and flexion,tibial varus and posterior slope.Firstly,the expected values from the Augmented Reality system were documented.Then we calculated the same values after each cut and finally,the same measurements were recorded radiolo-gically after the operations.Concerning statistical analysis,Lin’s concordance correlation coefficient was estimated,while Wilcoxon Signed Rank Test was performed when needed.RESULTS A statistically significant difference was observed regarding mean expected values and radiographic mea-surements for femoral flexion measurements only(Z score=2.67,P value=0.01).Nonetheless,this difference was statistically significantly lower than 1 degree(Z score=-4.21,P value<0.01).In terms of discrepancies in the calculations of expected values and controlled measurements,a statistically significant difference between tibial varus values was detected(Z score=-2.33,P value=0.02),which was also statistically significantly lower than 1 degree(Z score=-4.99,P value<0.01).CONCLUSION The results indicate satisfactory postoperative coronal alignment without outliers across all three different implants utilized.Augmented reality navigation systems can bolster orthopaedic surgeons’accuracy in achieving precise axial alignment.However,further research is required to further evaluate their efficacy and potential.
文摘Background A task assigned to space exploration satellites involves detecting the physical environment within a certain space.However,space detection data are complex and abstract.These data are not conducive for researchers'visual perceptions of the evolution and interaction of events in the space environment.Methods A time-series dynamic data sampling method for large-scale space was proposed for sample detection data in space and time,and the corresponding relationships between data location features and other attribute features were established.A tone-mapping method based on statistical histogram equalization was proposed and applied to the final attribute feature data.The visualization process is optimized for rendering by merging materials,reducing the number of patches,and performing other operations.Results The results of sampling,feature extraction,and uniform visualization of the detection data of complex types,long duration spans,and uneven spatial distributions were obtained.The real-time visualization of large-scale spatial structures using augmented reality devices,particularly low-performance devices,was also investigated.Conclusions The proposed visualization system can reconstruct the three-dimensional structure of a large-scale space,express the structure and changes in the spatial environment using augmented reality,and assist in intuitively discovering spatial environmental events and evolutionary rules.
基金Guizhou University of Finance and Economics 2024 Student Self-Funded Research Project Funding(Project no.2024ZXSY001)。
文摘The impact of augmented reality(AR)technology on consumer behavior has increasingly attracted academic attention.While early research has provided valuable insights,many challenges remain.This article reviews recent studies,analyzing AR’s technical features,marketing concepts,and action mechanisms from a consumer perspective.By refining existing frameworks and introducing a new model based on situation awareness theory,the paper offers a deeper exploration of AR marketing.Finally,it proposes directions for future research in this emerging field.
基金National Key Research and Development Program(2016YFC0106500800)NationalMajor Scientific Instruments and Equipments Development Project of National Natural Science Foundation of China(81627805)+3 种基金National Natural Science Foundation of China-Guangdong Joint Fund Key Program(U1401254)National Natural Science Foundation of China Mathematics Tianyuan Foundation(12026602)Guangdong Provincial Natural Science Foundation Team Project(6200171)Guangdong Provincial Health Appropriate Technology Promotion Project(20230319214525105,20230322152307666).
文摘Augmented-and mixed-reality technologies have pioneered the realization of real-time fusion and interactive projection for laparoscopic surgeries.Indocyanine green fluorescence imaging technology has enabled anatomical,functional,and radical hepatectomy through tumor identification and localization of target hepatic segments,driving a transformative shift in themanagement of hepatic surgical diseases,moving away from traditional,empirical diagnostic and treatment approaches toward digital,intelligent ones.The Hepatic Surgery Group of the Surgery Branch of the Chinese Medical Association,Digital Medicine Branch of the Chinese Medical Association,Digital Intelligent Surgery Committee of the Chinese Society of ResearchHospitals,and Liver Cancer Committee of the Chinese Medical Doctor Association organized the relevant experts in China to formulate this consensus.This consensus provides a comprehensive outline of the principles,advantages,processes,and key considerations associated with the application of augmented reality and mixed-reality technology combined with indocyanine green fluorescence imaging technology for hepatic segmental and subsegmental resection.The purpose is to streamline and standardize the application of these technologies.
基金Korea Institute of Energy Technology Evaluation and Planning(KETEP)grant funded by the Korea government(Grant No.20214000000140,Graduate School of Convergence for Clean Energy Integrated Power Generation)Korea Basic Science Institute(National Research Facilities and Equipment Center)grant funded by the Ministry of Education(2021R1A6C101A449)the National Research Foundation of Korea grant funded by the Ministry of Science and ICT(2021R1A2C1095139),Republic of Korea。
文摘Mg alloys possess an inherent plastic anisotropy owing to the selective activation of deformation mechanisms depending on the loading condition.This characteristic results in a diverse range of flow curves that vary with a deformation condition.This study proposes a novel approach for accurately predicting an anisotropic deformation behavior of wrought Mg alloys using machine learning(ML)with data augmentation.The developed model combines four key strategies from data science:learning the entire flow curves,generative adversarial networks(GAN),algorithm-driven hyperparameter tuning,and gated recurrent unit(GRU)architecture.The proposed model,namely GAN-aided GRU,was extensively evaluated for various predictive scenarios,such as interpolation,extrapolation,and a limited dataset size.The model exhibited significant predictability and improved generalizability for estimating the anisotropic compressive behavior of ZK60 Mg alloys under 11 annealing conditions and for three loading directions.The GAN-aided GRU results were superior to those of previous ML models and constitutive equations.The superior performance was attributed to hyperparameter optimization,GAN-based data augmentation,and the inherent predictivity of the GRU for extrapolation.As a first attempt to employ ML techniques other than artificial neural networks,this study proposes a novel perspective on predicting the anisotropic deformation behaviors of wrought Mg alloys.
基金Supported by the Key Research Program of the Chinese Academy of Sciences(ZDRE-KT-2021-3)。
文摘Augmented solar images were used to research the adaptability of four representative image extraction and matching algorithms in space weather domain.These include the scale-invariant feature transform algorithm,speeded-up robust features algorithm,binary robust invariant scalable keypoints algorithm,and oriented fast and rotated brief algorithm.The performance of these algorithms was estimated in terms of matching accuracy,feature point richness,and running time.The experiment result showed that no algorithm achieved high accuracy while keeping low running time,and all algorithms are not suitable for image feature extraction and matching of augmented solar images.To solve this problem,an improved method was proposed by using two-frame matching to utilize the accuracy advantage of the scale-invariant feature transform algorithm and the speed advantage of the oriented fast and rotated brief algorithm.Furthermore,our method and the four representative algorithms were applied to augmented solar images.Our application experiments proved that our method achieved a similar high recognition rate to the scale-invariant feature transform algorithm which is significantly higher than other algorithms.Our method also obtained a similar low running time to the oriented fast and rotated brief algorithm,which is significantly lower than other algorithms.
基金This research was financially supported by the Ministry of Trade,Industry,and Energy(MOTIE),Korea,under the“Project for Research and Development with Middle Markets Enterprises and DNA(Data,Network,AI)Universities”(AI-based Safety Assessment and Management System for Concrete Structures)(ReferenceNumber P0024559)supervised by theKorea Institute for Advancement of Technology(KIAT).
文摘Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal dependence,and noise.Therefore,methodologies for data augmentation and conversion of time series data into images for analysis have been studied.This paper proposes a fault detection model that uses time series data augmentation and transformation to address the problems of data imbalance,temporal dependence,and robustness to noise.The method of data augmentation is set as the addition of noise.It involves adding Gaussian noise,with the noise level set to 0.002,to maximize the generalization performance of the model.In addition,we use the Markov Transition Field(MTF)method to effectively visualize the dynamic transitions of the data while converting the time series data into images.It enables the identification of patterns in time series data and assists in capturing the sequential dependencies of the data.For anomaly detection,the PatchCore model is applied to show excellent performance,and the detected anomaly areas are represented as heat maps.It allows for the detection of anomalies,and by applying an anomaly map to the original image,it is possible to capture the areas where anomalies occur.The performance evaluation shows that both F1-score and Accuracy are high when time series data is converted to images.Additionally,when processed as images rather than as time series data,there was a significant reduction in both the size of the data and the training time.The proposed method can provide an important springboard for research in the field of anomaly detection using time series data.Besides,it helps solve problems such as analyzing complex patterns in data lightweight.
基金Air Force Research Laboratory(AFRL,Grant No.FA9453-18-2-0022)the New Mexico Consortium(NMC,Grant No.2RNA6)the US Department of Transportation Center:Transportation Consortium of South-Central States(TRANSET)Project 19STUNM02(TRANSET,Grant No.8-18-060ST)。
文摘Wireless smart sensors(WSS)process field data and inform inspectors about the infrastructure health and safety.In bridge engineering,inspectors need reliable data about changes in displacements under loads to make correct decisions about repairs and replacements.Access to displacement information in the field and in real-time remains a challenge as inspectors do not see the data in real time.Displacement data from WSS in the field undergoes additional processing and is seen at a different location.If inspectors were able to see structural displacements in real-time at the locations of interest,they could conduct additional observations,creating a new,information-based,decision-making reality in the field.This paper develops a new,human-centered interface that provides inspectors with real-time access to actionable structural data during inspection and monitoring enhanced by augmented reality(AR).It summarizes and evaluates the development and validation of the new human-infrastructure interface in laboratory experiments.The experiments demonstrate that the interface that processes all calculations in the AR device accurately estimates dynamic displacements in comparison with the laser.Using this new AR interface tool,inspectors can observe and compare displacement data,share it across space and time,visualize displacements in time history,and understand structural deflection more accurately through a displacement time history visualization.
文摘Objective:To evaluate the accuracy of our new three-dimensional(3D)automatic augmented reality(AAR)system guided by artificial intelligence in the identification of tumour’s location at the level of the preserved neurovascular bundle(NVB)at the end of the extirpative phase of nerve-sparing robot-assisted radical prostatectomy.Methods:In this prospective study,we enrolled patients with prostate cancer(clinical stages cT1ce3,cN0,and cM0)with a positive index lesion at target biopsy,suspicious for capsular contact or extracapsular extension at preoperative multiparametric magnetic resonance imaging.Patients underwent robot-assisted radical prostatectomy at San Luigi Gonzaga Hospital(Orbassano,Turin,Italy),from December 2020 to December 2021.At the end of extirpative phase,thanks to our new AAR artificial intelligence driven system,the virtual prostate 3D model allowed to identify the tumour’s location at the level of the preserved NVB and to perform a selective excisional biopsy,sparing the remaining portion of the bundle.Perioperative and postoperative data were evaluated,especially focusing on the positive surgical margin(PSM)rates,potency,continence recovery,and biochemical recurrence.Results:Thirty-four patients were enrolled.In 15(44.1%)cases,the target lesion was in contact with the prostatic capsule at multiparametric magnetic resonance imaging(Wheeler grade L2)while in 19(55.9%)cases extracapsular extension was detected(Wheeler grade L3).3D AAR guided biopsies were negative in all pathological tumour stage 2(pT2)patients while they revealed the presence of cancer in 14 cases in the pT3 cohort(14/16;87.5%).PSM rates were 0%and 7.1%in the pathological stages pT2 and pT3(<3 mm,Gleason score 3),respectively.Conclusion:With the proposed 3D AAR system,it is possible to correctly identify the lesion’s location on the NVB in 87.5%of pT3 patients and perform a 3D-guided tailored nerve-sparing even in locally advanced diseases,without compromising the oncological safety in terms of PSM rates.
文摘Visual inspection is commonly adopted for building operation,maintenance,and safety.The durability and defects of components or materials in buildings can be quickly assessed through visual inspection.However,implementations of visual inspection are substantially time-consuming,labor-intensive,and error-prone because useful auxiliary tools that can instantly highlight defects or damage locations from images are not available.Therefore,an advanced building inspection framework is developed and implemented with augmented reality(AR)and real-time damage detection in this study.In this framework,engineers should walk around and film every corner of the building interior to generate the three-dimensional(3D)environment through ARKit.Meanwhile,a trained YOLOv5 model real-time detects defects during this process,even in a large-scale field,and the defect locations indicating the detected defects are then marked in this 3D environment.The defects areas can be measured with centimeter-level accuracy with the light detection and ranging(LiDAR)on devices.All required damage information,including defect positions and sizes,is collected at a time and can be rendered in the 2D and 3D views.Finally,this visual inspection can be efficiently conducted,and the previously generated environment can also be loaded to re-localize existing defect marks for future maintenance and change observation.Moreover,the proposed framework is also implemented and verified by an underground parking lot in a building to detect and quantify surface defects on concrete components.As seen in the results,the conventional building inspection is significantly improved with the aid of the proposed framework in terms of damage localization,damage quantification,and inspection efficiency.
文摘The purpose of the Combined Economic Emission Dispatch(CEED)of electric power is to offer the most exceptional schedule for production units,which must run with both low fuel costs and emission levels concurrently,thereby meeting the lack of system equality and inequality constraints.Economic and emissions dispatching has become a primary and significant concern in power system networks.Consequences of using non-renewable fuels as input to exhaust power systems with toxic gas emissions and depleted resources for future generations.The optimal power allocation to generators serves as a solution to this problem.Emission dispatch reduces emissions while ignoring economic considerations.A collective strategy known as Combined Economic and Emission Dispatch is utilized to resolve the above-mentioned problems and investigate the trade-off relationship between fuel cost and emissions.Consequently,this work manages the Substantial Augmented Transformative Algorithm(SATA)to take care of the Combined Economic Emission Dispatch Problem(CEEDP)of warm units while fulfilling imperatives,for example,confines on generator limit,diminish the fuel cost,lessen the emission and decrease the force misfortune.SATA is a stochastic streamlining process that relies upon the development and knowledge of swarms.The goal is to minimize the total fuel cost of fossil-based thermal power generation units that generate and cause environmental pollution.The algorithm searches for solutions in the search space from the smallest to the largest in the case of forwarding search.The simulation of the proposed system is developed using MATLAB Simulink software.Simulation results show the effectiveness and practicability of this method in terms of economic and emission dispatching issues.The performance of the proposed system is compared with existing Artificial Bee Colony-Particle Swarm Optimization(ABC-PSO),Simulated Annealing(SA),and Differential Evolution(DE)methods.The fuel cost and gas emission of the proposed system are 128904$/hr and 138094.4652$/hr.
文摘In response to the construction needs of “Real 3D China”, the system structure, functional framework, application direction and product form of block level augmented reality three-dimensional map is designed. Those provide references and ideas for the later large-scale production of augmented reality three-dimensional map. The augmented reality three-dimensional map is produced based on skyline software. Including the map browsing, measurement and analysis and so on, the basic function of three-dimensional map is realized. The special functional module including housing management, pipeline management and so on is developed combining the need of residential quarters development, that expands the application fields of augmented reality three-dimensional map. Those lay the groundwork for the application of augmented reality three-dimensional map. .
基金supported by the Hainan Provincial Natural Science Foundation of China(project number:621QN269)the Sanya Science and Information Bureau Foundation(project number:2021GXYL251).
文摘Augmented Reality(AR)tries to seamlessly integrate virtual content into the real world of the user.Ideally,the virtual content would behave exactly like real objects.This necessitates a correct and precise estimation of the user’s viewpoint(or that of a camera)with regard to the virtual content’s coordinate sys-tem.Therefore,the real-time establishment of 3-dimension(3D)maps in real scenes is particularly important for augmented reality technology.So in this paper,we integrate Simultaneous Localization and Mapping(SLAM)technology into augmented reality.Our research is to implement an augmented reality system without markers using the ORB-SLAM2 framework algorithm.In this paper we propose an improved method for Oriented FAST and Rotated BRIEF(ORB)feature extraction and optimized key frame selection,as well as the use of the Progressive Sample Consensus(PROSAC)algorithm for planar estimation of augmented reality implementations,thus solving the problem of increased sys-tem runtime because of the loss of large amounts of texture information in images.In this paper,we get better results by comparing experiments and data analysis.However,there are some improved methods of PROSAC algorithm which are more suitable for the detection of plane feature points.
基金supported in part by the National Natural Science Foundation of China(NSFC)(92167106,61833014)Key Research and Development Program of Zhejiang Province(2022C01206)。
文摘The curse of dimensionality refers to the problem o increased sparsity and computational complexity when dealing with high-dimensional data.In recent years,the types and vari ables of industrial data have increased significantly,making data driven models more challenging to develop.To address this prob lem,data augmentation technology has been introduced as an effective tool to solve the sparsity problem of high-dimensiona industrial data.This paper systematically explores and discusses the necessity,feasibility,and effectiveness of augmented indus trial data-driven modeling in the context of the curse of dimen sionality and virtual big data.Then,the process of data augmen tation modeling is analyzed,and the concept of data boosting augmentation is proposed.The data boosting augmentation involves designing the reliability weight and actual-virtual weigh functions,and developing a double weighted partial least squares model to optimize the three stages of data generation,data fusion and modeling.This approach significantly improves the inter pretability,effectiveness,and practicality of data augmentation in the industrial modeling.Finally,the proposed method is verified using practical examples of fault diagnosis systems and virtua measurement systems in the industry.The results demonstrate the effectiveness of the proposed approach in improving the accu racy and robustness of data-driven models,making them more suitable for real-world industrial applications.
基金Supported by the‘Automotive Glazing Application in Intelligent Cockpit Human-Machine Interface’project(SKHX2021049)a collaboration between the Saint-Go Bain Research and the Beijing Normal University。
文摘Background With an increasing number of vehicles becoming autonomous,intelligent,and connected,paying attention to the future usage of car human-machine interface with these vehicles should become more relevant.Several studies have addressed car HMI but were less attentive to designing and implementing interactive glazing for every day(autonomous)driving contexts.Methods Reflecting on the literature,we describe an engineering psychology practice and the design of six novel future user scenarios,which envision the application of a specific set of augmented reality(AR)support user interactions.Additionally,we conduct evaluations on specific scenarios and experiential prototypes,which reveal that these AR scenarios aid the target user groups in experiencing a new type of interaction.The overall evaluation is positive with valuable assessment results and suggestions.Conclusions This study can interest applied psychology educators who aspire to teach how AR can be operationalized in a human-centered design process to students with minimal pre-existing expertise or minimal scientific knowledge in engineering psychology.
基金the Grant of Program for Scientific ResearchInnovation Team in Colleges and Universities of Anhui Province(2022AH010095)The Grant ofScientific Research and Talent Development Foundation of the Hefei University(No.21-22RC15)+2 种基金The Key Research Plan of Anhui Province(No.2022k07020011)The Grant of Anhui Provincial940 CMC,2024,vol.79,no.1Natural Science Foundation,No.2308085MF213The Open Fund of Information Materials andIntelligent Sensing Laboratory of Anhui Province IMIS202205,as well as the AI General ComputingPlatform of Hefei University.
文摘Depth estimation is an important task in computer vision.Collecting data at scale for monocular depth estimation is challenging,as this task requires simultaneously capturing RGB images and depth information.Therefore,data augmentation is crucial for this task.Existing data augmentationmethods often employ pixel-wise transformations,whichmay inadvertently disrupt edge features.In this paper,we propose a data augmentationmethod formonocular depth estimation,which we refer to as the Perpendicular-Cutdepth method.This method involves cutting realworld depth maps along perpendicular directions and pasting them onto input images,thereby diversifying the data without compromising edge features.To validate the effectiveness of the algorithm,we compared it with existing convolutional neural network(CNN)against the current mainstream data augmentation algorithms.Additionally,to verify the algorithm’s applicability to Transformer networks,we designed an encoder-decoder network structure based on Transformer to assess the generalization of our proposed algorithm.Experimental results demonstrate that,in the field of monocular depth estimation,our proposed method,Perpendicular-Cutdepth,outperforms traditional data augmentationmethods.On the indoor dataset NYU,our method increases accuracy from0.900 to 0.907 and reduces the error rate from0.357 to 0.351.On the outdoor dataset KITTI,our method improves accuracy from 0.9638 to 0.9642 and decreases the error rate from 0.060 to 0.0598.
文摘With the advent of the information age,augmented reality technology can enhance the sense of reality in the virtual world and immerse people in the real and virtual world.People have always been interested in virtual space or augmented reality technology,especially in the face of historical development trends.Museums have always been open to the public,they are not just a collection,but also an exhibition for the public.Through analyzing different museums,it is found that museums with augmented reality technology exhibitions are non-profit museums for the purpose of emotional experience.In order to find out the immersion factors of virtual reality in museums,on the basis of previous research,this paper divides immersion in augmented reality into story immersion,five-sense experience immersion,and spatial interaction immersion.Through the analysis of different museums,it is found that immersion through five-sense experience is the most commonly used method when all display media are included.This method provides educational content for museum visitors and projects virtual presentations through monitors and portable IT devices,thereby increasing visitors’viewing pleasure.