期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The substorm current wedge and midnight sector partial ring current near substorm onset: A synthesis based on a magnetotail magnetic field geometry model
1
作者 George J Sofko Kathryn A McWilliams Chad R Bryant 《Advances in Polar Science》 2013年第1期32-41,共10页
The Substorm Current Wedge (SCW) occurrence in the late growth and onset phases of substorms was proposed as the current system which disrupts cross-tail current by diverting it to the ionosphere. The closure curren... The Substorm Current Wedge (SCW) occurrence in the late growth and onset phases of substorms was proposed as the current system which disrupts cross-tail current by diverting it to the ionosphere. The closure current for the SCW originally was suggested to be the strong westward auroral electrojet (WEJ). However, the SCW-WEJ system has no viable generator current. Similarly, the asymmetric or Partial Ring Current (PRC) increases in strength during the growth phase, and is sometimes associated with an enhanced Region 2 field-aligned current (FAC) closing to the ionosphere, but specifics of that closure have been lacking. Here we present a tmifying picture which includes the SCW post- and pre-midnight (AM and PM, respectively) currents and a generator current in the midnight portion of the PRC system, with these currents based upon a model of the nightside magnetotail magnetic geometry. That geometry consists of open north and south lobe regions surrounding a plasmasheet with two types of closed field line regions-stretched lines in the central part of the plasmasheet (SPS) and dipolar lines (DPS) between the low lati- tude boundary layer (LLBL) regions and the SPS. There is also an important plasmasheet transition region (TPS) in which the dipolar field near the plasmapause gradually transforms to stretched lines near the earthward edge of the SPS, and in which the midnight part of the PRC flows. We propose that our proposed near-onset current system consists of a central current which be- comes part of the midnight sector PRC and which is the generator, to which are linked two three-part current systems, one on the dawnside and one on the duskside. The three-part systems consist of up and down FACs closing as Pedersen currents in the iono- sphere. These 3-part systems are not activated until near-onset is reached, because of a lack of ionospheric conductivity in the appropriate locations where the Pedersen current closure occurs. The initial downward FAC of the 3-part dawnside system and the final upward FAC of the 3-part duskside system correspond to the AM and PM current segments, respectively, of the originally proposed SCW. 展开更多
关键词 MAGNETOTAIL magnetic field model auroral substorm substorm current wedge partial ring current substorm onset
下载PDF
The intensity ratio I (557.7 nm)/I (427.8 nm) at Zhongshan Station in Antarctica
2
作者 HU Guoyuan AI Yong ZHANG Hong 《Advances in Polar Science》 2012年第1期9-11,共3页
Auroral intensity ratios at Zhongshan Station in Antarctica on 8 April 1999 are studied, along with variations in pene- trated electron energy. Ratios of/(557.7 nm)/I (427.8 nm) during the quiet period were from 5... Auroral intensity ratios at Zhongshan Station in Antarctica on 8 April 1999 are studied, along with variations in pene- trated electron energy. Ratios of/(557.7 nm)/I (427.8 nm) during the quiet period were from 5 to 22, and I (630.0 nm) / I (427.8 rim) ranged from 1 to 2.76. These variations were not caused by changes of atomic oxygen concentration, but rather by penetrated electron energy variability, or other mechanisms. Ratios decreased sharply during the auroral substorm, ranging from 1.66--6.5 and 0.071-1, respectively, mainly because of the increase in penetrated electron energy. At the onset of the substorm, the ratios reached their minima. This means that penetrated electron energy was maximized. When the substorm weakened, the penetrated electron energy returned to the pre-substorm level. 展开更多
关键词 auroral substorm intensity ratio electron
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部