期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Effects of Aging at 550℃ on α'-Martensitic Transformation of High Si-Bearing Metastable Austenitic Stainless Steel Weld Metal
1
作者 Yakui Chen Shitong Wei +1 位作者 Dong Wu Shanping Lu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2024年第9期1467-1479,共13页
The high Si-bearing 15Cr-9Ni-Nb metastable austenitic stainless steel weld metal was prepared via gas tungsten arc welding and then processed by stabilized heat treatment(SHT)at 850℃ for 3 h.The effects of 550℃ agin... The high Si-bearing 15Cr-9Ni-Nb metastable austenitic stainless steel weld metal was prepared via gas tungsten arc welding and then processed by stabilized heat treatment(SHT)at 850℃ for 3 h.The effects of 550℃ aging on the α'-martensitic transformation of the as-welded and the SHT weld metals were investigated.The results showed that the weld metal had poor thermal stability of austenite.The precipitation of NbC during the 850℃ SHT made the thermal stability of the local matrix decrease and led to the formation of a large amount of C-depleted α'-martensite.The precipitation of coarse σ-phase at the δ-ferrite led to the Cr-depleted zone and the formation of Cr-depleted α'-martensite at the early stage of 550℃ aging.The homogenized diffusion of C and Cr in the matrix during 550℃ aging led to the restoration of austenitic thermal stability and the decrease of α'-martensite content.The C-depleted α'-martensite content in the SHT weld metal decreased rapidly at the early stage of aging due to the fast diffusion rate of the C atom in the matrix,while the Cr-depleted α'-martensite decreased at the later stage of aging due to the decreased diffusion rate of the Cr. 展开更多
关键词 Metastable austenitic stainless steel weld metal α'-martensitic transformation Δ-FERRITE σ-phase
原文传递
Interactive effect of thermal aging and proton irradiation on microstructural evolution and hardening ofδ-ferrite in 308L stainless steel weld metal
2
作者 Xiaodong Gao Xiaodong Lin +6 位作者 Tao Guo Lining Xu Yaolei Han Baolong Jiang Xingyuan Mei Qunjia Peng Lijie Qiao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第3期140-155,共16页
In the harsh service environment of high temperature and intense neutron irradiation in water-cooled nuclear reactors,the austenitic stainless steel weld overlay cladding on the inner surface of the reactor pressure v... In the harsh service environment of high temperature and intense neutron irradiation in water-cooled nuclear reactors,the austenitic stainless steel weld overlay cladding on the inner surface of the reactor pressure vessel suffers from thermal aging and irradiation damage simultaneously,which can induce microstructural evolution and hardening of the material.Since it is quite difficult to achieve this simul-taneous process out of the pile,two kinds of combined experiments,i.e.,post-irradiation thermal aging and post-aging irradiation were performed on 308 L stainless steel weld metals in this work.The interactive effect of thermal aging and proton irradiation on microstructural evolution and hardening ofδ-ferrite in 308 L weld metal was investigated by combining atom probe tomography,transmission elec-tron microscopy and nanoindentation tests.The results revealed that thermal aging could eliminate the dislocation loops induced by irradiation and affect the phase transition process by accelerating spinodal decomposition and G-phase precipitation,thus enhancing hardening of irradiatedδ-ferrite.For the effect of irradiation on the microstructure and hardening of thermally agedδ-ferrite,however,intensive collision cascades can intensify G-phase precipitation and dislocation loop formation but decrease spinodal decomposition,leading to a limited effect on hardening of thermally agedδ-ferrite.Furthermore,the interaction of thermal aging and irradiation can promote G-phase precipitation.Meanwhile,the interaction can causeδ-ferrite hardening,which is mainly influenced by spinodal decomposition,followed by G-phase and dislocation loops,where spinodal decomposition and G-phase cause hardening by inducing strain fields. 展开更多
关键词 austenitic stainless steel weld metals Thermal aging Proton irradiation Interaction Microstructural evolution HARDENING
原文传递
Effect of Heat Input on Fume Generation and Joint Properties of Gas Metal Arc Welded Austenitic Stainless Steel 被引量:7
3
作者 K Srinivasan V Balasubramanian 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2011年第10期72-79,共8页
The effect of heat input on fume and their compositions during gas metal arc welding (GMAW) of AISI 316 stainless steel plates are investigated. Fume generation rate (FGR) and fume percentage were determined by AN... The effect of heat input on fume and their compositions during gas metal arc welding (GMAW) of AISI 316 stainless steel plates are investigated. Fume generation rate (FGR) and fume percentage were determined by ANSI/AWS F1.2 methods. Particle characterization was performed with SEM-XEDS and XRF analysis to reveal the particle morphology and chemical composition of the fume particles. The SEM analysis reveals the morphology of particles having three distinct shapes namely spherical, irregular, and agglomerated. Spherical particles were the most abundant type of individual particle. All the fume particle size falls in the range of less than 100 nm. Mechanical properties (strength, hardness and toughness) and microstructural analysis of the weld deposits were evaluated. It is found that heat input of 1.15 kJ/mm is beneficial to weld stainless steel by GMAW process due to lower level of welding fume emissions and superior mechanical properties of the joints. 展开更多
关键词 gas metal arc weldings fume generation rates austenitic stainless steels tensile property scanning electron microscopes X-ray florescence spectrometer
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部