In this paper,an ejector enhanced two-stage auto-cascade refrigeration cycle(EARC)using ternary mixture R600a/R32/R1150 is proposed for application of-80℃freezing.In EARC cycle,an ejector was employed to recover the ...In this paper,an ejector enhanced two-stage auto-cascade refrigeration cycle(EARC)using ternary mixture R600a/R32/R1150 is proposed for application of-80℃freezing.In EARC cycle,an ejector was employed to recover the expansion work in the throttling processes and lifted the suction pressure of the compressor.The performances of the ejector enhanced two-stage auto-cascade refrigeration cycle and conventional auto-cascade refrigeration cycle(CARC)were compared using thermodynamic analysis methods.The influences of the important operation parameters including mass fraction ratio of the mixture,fluid quality at the second separator inlet,condensation temperature,evaporation temperature,and expansion ratio of expansion valve on the performances of EARC cycle were discussed in detail.The results indicate that ternary mixture R600a/R32/R1150 has the optimal mass fraction ratio of 0.45/0.2/0.35 with respect to the maximum COP.The EARC cycle yields higher performance than the CARC cycle in terms of COP,exergy efficiency and volumetric refrigeration capacity.And 4.9%-36.5%improvement in COP and 6.9%-34.3%higher exergy efficiency could be obtained in EARC cycle comparing with CARC cycle.The finding of this study suggests that the EARC cycle has a promising application potential for low temperature freezing.展开更多
The use of carbon dioxide as a working fluid has been the subject of extensive studies in recent years, particularly in the field of refrigeration where it is at the heart of research to replace CFC and HCFC. Its ther...The use of carbon dioxide as a working fluid has been the subject of extensive studies in recent years, particularly in the field of refrigeration where it is at the heart of research to replace CFC and HCFC. Its thermodynamic properties make it a fluid of choice in the efficient use of energy at low and medium temperatures in engine cycles. However, the performance of transcritical CO2 cycles weakens under high temperature and pressure conditions, especially in refrigeration systems;On the other hand, this disadvantage becomes rather interesting in engine cycles where CO2 can be used as an alternative to the organic working fluid in small and medium-sized electrical systems for low quality or waste heat sources. In order to improve the performance of systems operating with CO2 in the field of refrigeration and electricity production, research has made it possible to develop several concepts, of which this article deals with a review of the state of the art, followed by analyzes in-depth and critical of the various developments to the most recent modifications in these fields. Detailed discussions on the performance and technical characteristics of the different evolutions are also highlighted as well as the factors affecting the overall performance of the systems studied. Finally, perspectives on the future development of the use of CO2 in these different cycles are presented.展开更多
In view of different compressor adding ways in the ammonia-water absorption/compression combined refrigeration AWA /CCR cycle combining the Schulz state equation of the ammonia-water solution the theoretical analysis ...In view of different compressor adding ways in the ammonia-water absorption/compression combined refrigeration AWA /CCR cycle combining the Schulz state equation of the ammonia-water solution the theoretical analysis and calculations on two combination ways by adding the compressor in the high-pressure area and in the low-pressure area are conducted respectively.The effects of several factors including the evaporation temperature Te heat-source temperature Th as well as the cooling water temperature Tw on the equivalent heat consumption in compression qCW heat consumption in absorption qG and the system coefficient of performance COP are analyzed under the two combination configurations.The results show that the effect of the equivalent heat consumption in compression on the COP is less than that of the heat consumption in absorption.Besides the compressor set in the high-pressure area uses more energy than that in the low-pressure area. Moreover the compressor in the low-pressure area is superior to that in the high-pressure area with respect to the COP. Under the given intermediate pressure there is an optimum heat-source temperature corresponding to the maximum COP of the AWA/CCR cycle.展开更多
Abstract--Vapor compression refrigeration cycle (VCC) system is a high dimensional coupling thermodynamic system for which the controller design is a great challenge. In this paper, a model predictive control based ...Abstract--Vapor compression refrigeration cycle (VCC) system is a high dimensional coupling thermodynamic system for which the controller design is a great challenge. In this paper, a model predictive control based energy efficient control strategy which aims at maximizing the system efficiency is proposed. Firstly, according to the mass and energy conservation law, an analysis on the nonlinear relationship between superheat and cooling load is carried out, which can produce the maximal effect on the system performance. Then a model predictive control (MPC) based controller is developed for tracking the calculated setting curve of superheat degree and pressure difference based on model identified from data which can be obtained from an experimental rig. The proposed control strategy maximizes the coefficient of performance (COP) which depends on operating conditions, in the meantime, it meets the changing demands of cooling capacity. The effectiveness of the control performance is validated on the experimental rig. Index Terms--Cooling load, model predictive control (MPC), superheat, vapor compression refrigeration cycle (VCC).展开更多
A new model of a quantum refrigeration cycle composed of two adiabatic and two isomagnetic field processes is established. The working substance in the cycle consists of many non-interacting spin-1/2 systems. The perf...A new model of a quantum refrigeration cycle composed of two adiabatic and two isomagnetic field processes is established. The working substance in the cycle consists of many non-interacting spin-1/2 systems. The performance of the cycle is investigated, based on the quantum master equation and semi-group approach. The general expressions of several important performance parameters, such as the coefficient of performance, cooling rate, and power input, are given. It is found that the coefficient of performance of this cycle is in the closest analogy to that of the classical Carnot cycle. Furthermore, at high temperatures the optimal relations of the cooling rate and the maximum cooling rate are analysed in detail. Some performance characteristic curves of the cycle are plotted, such as the cooling rate versus the maximum ratio between high and low "temperatures" of the working substances, the maximum cooling rate versus the ratio between high and low "magnetic fields" and the "temperature" ratio between high and low reservoirs. The obtained results are further generalized and discussed, so that they may be directly applied to describing the performance of the quantum refrigerator using spin-J systems as the working substance. Finally, the optimum characteristics of the quantum Carnot and Ericsson refrigeration cycles are derived by analogy.展开更多
An open loop cycle carbon dioxide(CO2)refrigeration system is established,and the cooling performances of high-pressure CO2 under different storage conditions(25℃,30℃,and 35℃)are investigated.Moreover,the experimen...An open loop cycle carbon dioxide(CO2)refrigeration system is established,and the cooling performances of high-pressure CO2 under different storage conditions(25℃,30℃,and 35℃)are investigated.Moreover,the experimental mass flow rates of CO2 are compared with the theoretical values at different conditions and refrigeration capacities.The results indicate that the storage condition of CO2 has a significant impact on the refrigeration performance,and the mass flow rate of CO2 increases with the increasing storage temperature in a given refrigeration capacity.展开更多
A theoretical investigation is presented about a double evaporator ejector refrigeration cycle(DEERC).Special attention is paid to take into account the influence of the sub-cooling and superheating effects induced by...A theoretical investigation is presented about a double evaporator ejector refrigeration cycle(DEERC).Special attention is paid to take into account the influence of the sub-cooling and superheating effects induced by an internal heat exchanger(IHX).The ejector is introduced into the baseline cycle in order to mitigate the throttling process losses and increase the compressor suction pressure.Moreover,the IHX has the structure of a concentric counter-flow type heat exchanger and is intentionally used to ensure that the fluid at the compressor inlet is vapor.To assess accurately the influence of the IHX on the DEERC performance,a mathematical model is derived in the frame of the dominant one-dimensional theory for ejectors.The model also accounts for the friction effect in the ejector mixing section.The equations of this model are solved using an Engineering Equation Solver(EES)for different fluids.These are:R134a as baseline fluid and other environment friendly refrigerants used for comparison,namely,R1234yf,R1234ze,R600,R600a,R290,R717 and R1270.The simulation results show that the DEERC with an IHX can achieve COP(the coefficient of performance)improvements from 5.2 until 10%.展开更多
Chlorofluorocarbons(CFCs) or hydrochlorofluorocarbons(HCFCs) are as main refrigerants used in traditional refrigeration systems driven by electricity from burning fossil fuels, which is regarded as one of the major re...Chlorofluorocarbons(CFCs) or hydrochlorofluorocarbons(HCFCs) are as main refrigerants used in traditional refrigeration systems driven by electricity from burning fossil fuels, which is regarded as one of the major reasons for ozone depletion (man-made refrigerants emission) and global warming (CO 2 emission). So people pay more and more attention to natural refrigerants and energy saving technologies. An innovative system combining CO 2 transcritical cycle with ejector cycle is proposed in this paper. The CO 2 compression sub-cycle is powered by electricity with the characteristics of relatively high temperature in the gas cooler (defined as an intercooler by the proposed system). In order to recover the waste heat, an ejector sub-cycle operating with the natural refrigerants (NH 3, H 2O) is employed. The two sub-cycles are connected by an intercooler. This combined cycle joins the advantages of the two cycles together and eliminates the disadvantages. The influences of the evaporation temperature in CO 2 compression sub-cycle, the evaporation temperature in the ejector sub-cycle, the temperature in the intercooler and the condensation temperature in the proposed system performance are discussed theoretically in this study. In addition, some unique features of the system are presented.展开更多
In order to identify the locations of irreversible loss within the transcritical carbon dioxide refrigeration cycle with an expansion turbine, a method with respect to the second law of thermodynamics based on exergy ...In order to identify the locations of irreversible loss within the transcritical carbon dioxide refrigeration cycle with an expansion turbine, a method with respect to the second law of thermodynamics based on exergy analysis model is applied. The effects of heat rejection pressures, outlet temperatures of gas cooler and evaporating temperatures on the exergy loss, exergy efficiency and the coefficient of performance (COP) of the expansion turbine cycle are analyzed. It is found that the great percentages of exergy losses take place in the gas cooler and compressor. Moreover, heat rejection pressures, outlet temperatures of gas cooler and evaporating temperatures have strong influence on the exergy efficiency, COP and the exergy loss of each component. The analysis shows that there exists an optimal heat rejection pressure corresponding to the maximum exergy efficiency and COP, respectively. The results are of significance in providing theoretical basis for optimal design and the control of the transcritical carbon dioxide system with an expansion turbine.展开更多
This paper is focused on the cascade refrigeration cycle using natural refrigerant CO 2-NH 3. The properties of refrigerants CO 2 and NH 3 are introduced and analyzed.CO 2 has the advantage in low stage of cascade ref...This paper is focused on the cascade refrigeration cycle using natural refrigerant CO 2-NH 3. The properties of refrigerants CO 2 and NH 3 are introduced and analyzed.CO 2 has the advantage in low stage of cascade refrigeration cycle due to its good characteristics and properties. The thermodynamic analysis results of the CO 2-NH 3 cascade refrigeration cycle demonstrates that the cycle has an optimum condensation temperature of low stage and also has an optimum flow rate ratio.By comparing with the R13-R22 and NH 3-NH 3 cascade refrigeration cycles, the mass flow rate ratio of CO 2-NH 3 is larger than those of R13-R22 and NH 3-NH 3, the theoretical COP of CO 2-NH 3 cascade refrigeration cycle is larger than that of the R13-R22 cascade cycle and smaller than that of the NH 3-NH 3 cascade cycle. But the real COP of CO 2-NH 3 cascade cycle will be higher than those of R13-R22 and NH 3-NH 3 because the specific volume of CO 2 at low temperature does not change much and its dynamic viscosity is also small.展开更多
The preliminary design of a multi-barrels pellet injector with cycle refrigerator as an advanced plasma-fuelling tool for HL-2A tokamak has been proposed. The design aims at precise temperature control, easy operation...The preliminary design of a multi-barrels pellet injector with cycle refrigerator as an advanced plasma-fuelling tool for HL-2A tokamak has been proposed. The design aims at precise temperature control, easy operation with high reliability and high flexibility. GM-cycle refrigerator and pipe-gun structure have been employed to produce 25 pellets in 25 gun barrels simultaneously and the design aims. have been accomplished. Prime design principle, engineering parameters, structure and layout of the cryostat components as well as calculation of heat load for the cryostat are presented.展开更多
Magnetic refrigeration is a revolutionary, efficient, environmentally friendly cooling technology, which is on the threshold of commercialization. The magnetic rare earth materials are utilized as the magnetic refrige...Magnetic refrigeration is a revolutionary, efficient, environmentally friendly cooling technology, which is on the threshold of commercialization. The magnetic rare earth materials are utilized as the magnetic refrigerants in most cooling devices, and for many cooling application the Nd2Fe14B permanent magnets are employed as the source of the magnetic field. The status of the near room temperature magnetic cooling was reviewed.展开更多
Liquefied natural gas(LNG) is the most economical way of transporting natural gas(NG) over long distances. Liquefaction of NG using vapor compression refrigeration system requires high operating and capital cost. Due ...Liquefied natural gas(LNG) is the most economical way of transporting natural gas(NG) over long distances. Liquefaction of NG using vapor compression refrigeration system requires high operating and capital cost. Due to lack of systematic design methods for multistage refrigeration cycles, conventional approaches to determine optimal cycle are largely trial-and-error. In this paper a novel mixed integer non-linear programming(MINLP)model is introduced to select optimal synthesis of refrigeration systems to reduce both operating and capital costs of an LNG plant. Better conceptual understanding of design improvement is illustrated on composite curve(CC) and exergetic grand composite curve(EGCC) of pinch analysis diagrams. In this method a superstructure representation of complex refrigeration system is developed to select and optimize key decision variables in refrigeration cycles(i.e. partition temperature, compression configuration, refrigeration features, refrigerant flow rate and economic trade-off). Based on this method a program(LNG-Pro) is developed which integrates VBA,Refprop and Excel MINLP Solver to automate the methodology. Design procedure is applied on a sample LNG plant to illustrate advantages of using this method which shows a 3.3% reduction in total shaft work consumption.展开更多
A novel power and cooling system combined system which coupled organic Rankine cycle(ORC) with vapor compression refrigeration cycle(VCRC) was proposed. R245 fa and butane were selected as the working fluid for the po...A novel power and cooling system combined system which coupled organic Rankine cycle(ORC) with vapor compression refrigeration cycle(VCRC) was proposed. R245 fa and butane were selected as the working fluid for the power and refrigeration cycle, respectively. A performance comparison and analysis for the combined system was presented. The results show that dual-pressure ORC-VCRC system can achieve an increase of 7.1% in thermal efficiency and 6.7% in exergy efficiency than that of basic ORC-VCRC. Intermediate pressure is a key parameter to both net power and exergy efficiency of dual-pressure ORC-VCRC system. Combined system can produce maximum net power and exergy efficiency at 0.85 MPa for intermediate pressure and 2.4 MPa for high pressure, respectively. However, superheated temperature at expander inlet has little impact on the two indicators. It can achieve higher overall COP, net power and exergy efficiency at smaller difference between condensation temperature and evaporation temperature of VCRC.展开更多
Auto-cascade absorption refrigeration(ACAR) systems are a class of new cycles that can achieve low refrigeration temperatures by utilizing low-quality thermal energy. In this study, the equivalent thermodynamic proces...Auto-cascade absorption refrigeration(ACAR) systems are a class of new cycles that can achieve low refrigeration temperatures by utilizing low-quality thermal energy. In this study, the equivalent thermodynamic processes of a reversible ACAR system are established, and illustrated in a T-s diagram. The formula of the coefficient of performance for the reversible ACAR system is derived from the first and second thermodynamic laws. And then, the equivalent cycle of an irreversible ACAR system is established. The irreversible ACAR system is optimized by minimizing entropy generation of the thermodynamic processes. As a result, the optimum distribution ratio of heat fluxes at cascade process, which is defined as a ratio of heat fluxes between a condensing reservoir and cascade reservoir, and the optimum cascade temperature are obtained. Finally, its coefficient of performance and thermodynamic perfect degree are determined with minimum entropy generation.展开更多
Refrigeration coefficient, ε, is usually calculated by using the First Law of Thermodynamics. In this paper, a new derivation process is introduced through the combination of the Second Law of Thermodynamics with the...Refrigeration coefficient, ε, is usually calculated by using the First Law of Thermodynamics. In this paper, a new derivation process is introduced through the combination of the Second Law of Thermodynamics with the First Law of Thermodynamics. As a result, two new calculation equations for refrigeration coefficient are proposed. One equation is equivalent to the common method, but its form is a little complicated for real calculation. Another equation is the further simplification, and can be used to calculate the refrigeration coefficient instead of common method with a oermit error.展开更多
The analysis of organic regenerative cycles is necessary to verify the possibilities of increasing the work and efficiency of a thermodynamic cycle according to some control parameters. The results obtained from this ...The analysis of organic regenerative cycles is necessary to verify the possibilities of increasing the work and efficiency of a thermodynamic cycle according to some control parameters. The results obtained from this work can be beneficial in several areas such as solar thermal energy. Simulations of an organic regenerative cycle with up to 4 extractions were carried out in order to analyze the behavior of maximum efficiency and the work generated in the turbine. R134a was used as an organic fluid, used in low temperature cycles. Evaporation temperature data between 60°C and 100°C and superheat temperatures equal to 120°C, 200°C and 300°C were tested for cycle analysis. Thus, it was possible to verify the work behavior and maximum efficiency depending on the number of extractions, superheating temperature and evaporation temperature. The models and simulations were made using the Engineering Equation Solver (EES) software and the results were analyzed in Excel. It was concluded that the maximum efficiency increases with the increase of the evaporation temperature and the number of extractions and decreases with the increase of the superheat temperature. The turbine work grows by increasing the evaporation and superheat temperatures, but decreases with the increase in extractions.展开更多
With COP and dynamic characteristics in refrigeration cycle as criteria,a new metal hydride couple——LaNi 4.61 Mn 0.26 Al 0.13 /La 0.6 Y 0.4 Ni 4.8 Mn 0.2 was selected by establishing calculation procedure and metal ...With COP and dynamic characteristics in refrigeration cycle as criteria,a new metal hydride couple——LaNi 4.61 Mn 0.26 Al 0.13 /La 0.6 Y 0.4 Ni 4.8 Mn 0.2 was selected by establishing calculation procedure and metal hydride selection model.The experimental results show that the refigeration cycle of the selected couple is good in the performance.The recovered waste heat and refrigeration power from exhaust gas of several kinds of automobile are calculated by waste-heat formula,coefficient R Q and COP.Refrigeration cycle of the new couple can satisfy the air-conditioning requirement of truck and car and is not enough in passenger car,according to the respective cooling load.展开更多
The two-stage transcritical CO_(2) refrigeration cycle with dedicated dual-subcooling and mechanical recooling is proposed.The inter-stage pressure is critical for such cycle performances;however,it has not been studi...The two-stage transcritical CO_(2) refrigeration cycle with dedicated dual-subcooling and mechanical recooling is proposed.The inter-stage pressure is critical for such cycle performances;however,it has not been studied exactly.Therefore,the research aim is to disclose the effect of inter-stage pressure on performances of the proposed cycle.The main work consists of four aspects.Firstly,the comparative study is performed to display advantages of the proposed cycle.Secondly,the key temperatures,heat and power consumptions as well as performance indicators for different inter-stage pressures are analyzed in detail,based on the parametric model.Thirdly,the optimal inter-stage pressure for different conditions is obtained by the nonlinear direct search method.Finally,the economic performance is assessed.It is found that the compressor power of the proposed cycle drops by 12%,and the working temperature lower limit is reduced by 11℃.Furthermore,it is considered that the optimal inter-stage pressure is insensitive to the heat source temperature.The novelty lies in illustrating the effect of inter-stage pressure,obtaining trends of the optimal value,and pointing out the system feasibility.The paper is favorable for design and operation optimization of the proposed system.展开更多
基金financially supported by National Natural Science Foundation of China(NSFC)under the grant No.51806160China Postdoctoral Science Foundation(CPSF)under the grant No.2018M640982.
文摘In this paper,an ejector enhanced two-stage auto-cascade refrigeration cycle(EARC)using ternary mixture R600a/R32/R1150 is proposed for application of-80℃freezing.In EARC cycle,an ejector was employed to recover the expansion work in the throttling processes and lifted the suction pressure of the compressor.The performances of the ejector enhanced two-stage auto-cascade refrigeration cycle and conventional auto-cascade refrigeration cycle(CARC)were compared using thermodynamic analysis methods.The influences of the important operation parameters including mass fraction ratio of the mixture,fluid quality at the second separator inlet,condensation temperature,evaporation temperature,and expansion ratio of expansion valve on the performances of EARC cycle were discussed in detail.The results indicate that ternary mixture R600a/R32/R1150 has the optimal mass fraction ratio of 0.45/0.2/0.35 with respect to the maximum COP.The EARC cycle yields higher performance than the CARC cycle in terms of COP,exergy efficiency and volumetric refrigeration capacity.And 4.9%-36.5%improvement in COP and 6.9%-34.3%higher exergy efficiency could be obtained in EARC cycle comparing with CARC cycle.The finding of this study suggests that the EARC cycle has a promising application potential for low temperature freezing.
文摘The use of carbon dioxide as a working fluid has been the subject of extensive studies in recent years, particularly in the field of refrigeration where it is at the heart of research to replace CFC and HCFC. Its thermodynamic properties make it a fluid of choice in the efficient use of energy at low and medium temperatures in engine cycles. However, the performance of transcritical CO2 cycles weakens under high temperature and pressure conditions, especially in refrigeration systems;On the other hand, this disadvantage becomes rather interesting in engine cycles where CO2 can be used as an alternative to the organic working fluid in small and medium-sized electrical systems for low quality or waste heat sources. In order to improve the performance of systems operating with CO2 in the field of refrigeration and electricity production, research has made it possible to develop several concepts, of which this article deals with a review of the state of the art, followed by analyzes in-depth and critical of the various developments to the most recent modifications in these fields. Detailed discussions on the performance and technical characteristics of the different evolutions are also highlighted as well as the factors affecting the overall performance of the systems studied. Finally, perspectives on the future development of the use of CO2 in these different cycles are presented.
基金The National Natural Science Foundation of China(No.51176029)
文摘In view of different compressor adding ways in the ammonia-water absorption/compression combined refrigeration AWA /CCR cycle combining the Schulz state equation of the ammonia-water solution the theoretical analysis and calculations on two combination ways by adding the compressor in the high-pressure area and in the low-pressure area are conducted respectively.The effects of several factors including the evaporation temperature Te heat-source temperature Th as well as the cooling water temperature Tw on the equivalent heat consumption in compression qCW heat consumption in absorption qG and the system coefficient of performance COP are analyzed under the two combination configurations.The results show that the effect of the equivalent heat consumption in compression on the COP is less than that of the heat consumption in absorption.Besides the compressor set in the high-pressure area uses more energy than that in the low-pressure area. Moreover the compressor in the low-pressure area is superior to that in the high-pressure area with respect to the COP. Under the given intermediate pressure there is an optimum heat-source temperature corresponding to the maximum COP of the AWA/CCR cycle.
基金supported by the National Natural Science Foundation of China(61233004,61221003,61374109,61473184,61703223,61703238)the National Basic Research Program of China(973 Program)(2013CB035500)+1 种基金Shandong Provincial Natural Science Foundation of China(ZR2017BF014,ZR2017MF017)the National Research Foundation of Singapore(NRF-2011,NRF-CRP001-090)
文摘Abstract--Vapor compression refrigeration cycle (VCC) system is a high dimensional coupling thermodynamic system for which the controller design is a great challenge. In this paper, a model predictive control based energy efficient control strategy which aims at maximizing the system efficiency is proposed. Firstly, according to the mass and energy conservation law, an analysis on the nonlinear relationship between superheat and cooling load is carried out, which can produce the maximal effect on the system performance. Then a model predictive control (MPC) based controller is developed for tracking the calculated setting curve of superheat degree and pressure difference based on model identified from data which can be obtained from an experimental rig. The proposed control strategy maximizes the coefficient of performance (COP) which depends on operating conditions, in the meantime, it meets the changing demands of cooling capacity. The effectiveness of the control performance is validated on the experimental rig. Index Terms--Cooling load, model predictive control (MPC), superheat, vapor compression refrigeration cycle (VCC).
基金Project supported by the National Natural Science Foundation of China (Grant No 10465003) and the Natural Science Foundation of Jiangxi Province, China (Grant No 0412011).
文摘A new model of a quantum refrigeration cycle composed of two adiabatic and two isomagnetic field processes is established. The working substance in the cycle consists of many non-interacting spin-1/2 systems. The performance of the cycle is investigated, based on the quantum master equation and semi-group approach. The general expressions of several important performance parameters, such as the coefficient of performance, cooling rate, and power input, are given. It is found that the coefficient of performance of this cycle is in the closest analogy to that of the classical Carnot cycle. Furthermore, at high temperatures the optimal relations of the cooling rate and the maximum cooling rate are analysed in detail. Some performance characteristic curves of the cycle are plotted, such as the cooling rate versus the maximum ratio between high and low "temperatures" of the working substances, the maximum cooling rate versus the ratio between high and low "magnetic fields" and the "temperature" ratio between high and low reservoirs. The obtained results are further generalized and discussed, so that they may be directly applied to describing the performance of the quantum refrigerator using spin-J systems as the working substance. Finally, the optimum characteristics of the quantum Carnot and Ericsson refrigeration cycles are derived by analogy.
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘An open loop cycle carbon dioxide(CO2)refrigeration system is established,and the cooling performances of high-pressure CO2 under different storage conditions(25℃,30℃,and 35℃)are investigated.Moreover,the experimental mass flow rates of CO2 are compared with the theoretical values at different conditions and refrigeration capacities.The results indicate that the storage condition of CO2 has a significant impact on the refrigeration performance,and the mass flow rate of CO2 increases with the increasing storage temperature in a given refrigeration capacity.
文摘A theoretical investigation is presented about a double evaporator ejector refrigeration cycle(DEERC).Special attention is paid to take into account the influence of the sub-cooling and superheating effects induced by an internal heat exchanger(IHX).The ejector is introduced into the baseline cycle in order to mitigate the throttling process losses and increase the compressor suction pressure.Moreover,the IHX has the structure of a concentric counter-flow type heat exchanger and is intentionally used to ensure that the fluid at the compressor inlet is vapor.To assess accurately the influence of the IHX on the DEERC performance,a mathematical model is derived in the frame of the dominant one-dimensional theory for ejectors.The model also accounts for the friction effect in the ejector mixing section.The equations of this model are solved using an Engineering Equation Solver(EES)for different fluids.These are:R134a as baseline fluid and other environment friendly refrigerants used for comparison,namely,R1234yf,R1234ze,R600,R600a,R290,R717 and R1270.The simulation results show that the DEERC with an IHX can achieve COP(the coefficient of performance)improvements from 5.2 until 10%.
文摘Chlorofluorocarbons(CFCs) or hydrochlorofluorocarbons(HCFCs) are as main refrigerants used in traditional refrigeration systems driven by electricity from burning fossil fuels, which is regarded as one of the major reasons for ozone depletion (man-made refrigerants emission) and global warming (CO 2 emission). So people pay more and more attention to natural refrigerants and energy saving technologies. An innovative system combining CO 2 transcritical cycle with ejector cycle is proposed in this paper. The CO 2 compression sub-cycle is powered by electricity with the characteristics of relatively high temperature in the gas cooler (defined as an intercooler by the proposed system). In order to recover the waste heat, an ejector sub-cycle operating with the natural refrigerants (NH 3, H 2O) is employed. The two sub-cycles are connected by an intercooler. This combined cycle joins the advantages of the two cycles together and eliminates the disadvantages. The influences of the evaporation temperature in CO 2 compression sub-cycle, the evaporation temperature in the ejector sub-cycle, the temperature in the intercooler and the condensation temperature in the proposed system performance are discussed theoretically in this study. In addition, some unique features of the system are presented.
基金SupportedbytheSpecializedResearchFundfortheDoctoralProgramofHigherEducation (No .D0 2 0 0 10 5)
文摘In order to identify the locations of irreversible loss within the transcritical carbon dioxide refrigeration cycle with an expansion turbine, a method with respect to the second law of thermodynamics based on exergy analysis model is applied. The effects of heat rejection pressures, outlet temperatures of gas cooler and evaporating temperatures on the exergy loss, exergy efficiency and the coefficient of performance (COP) of the expansion turbine cycle are analyzed. It is found that the great percentages of exergy losses take place in the gas cooler and compressor. Moreover, heat rejection pressures, outlet temperatures of gas cooler and evaporating temperatures have strong influence on the exergy efficiency, COP and the exergy loss of each component. The analysis shows that there exists an optimal heat rejection pressure corresponding to the maximum exergy efficiency and COP, respectively. The results are of significance in providing theoretical basis for optimal design and the control of the transcritical carbon dioxide system with an expansion turbine.
文摘This paper is focused on the cascade refrigeration cycle using natural refrigerant CO 2-NH 3. The properties of refrigerants CO 2 and NH 3 are introduced and analyzed.CO 2 has the advantage in low stage of cascade refrigeration cycle due to its good characteristics and properties. The thermodynamic analysis results of the CO 2-NH 3 cascade refrigeration cycle demonstrates that the cycle has an optimum condensation temperature of low stage and also has an optimum flow rate ratio.By comparing with the R13-R22 and NH 3-NH 3 cascade refrigeration cycles, the mass flow rate ratio of CO 2-NH 3 is larger than those of R13-R22 and NH 3-NH 3, the theoretical COP of CO 2-NH 3 cascade refrigeration cycle is larger than that of the R13-R22 cascade cycle and smaller than that of the NH 3-NH 3 cascade cycle. But the real COP of CO 2-NH 3 cascade cycle will be higher than those of R13-R22 and NH 3-NH 3 because the specific volume of CO 2 at low temperature does not change much and its dynamic viscosity is also small.
文摘The preliminary design of a multi-barrels pellet injector with cycle refrigerator as an advanced plasma-fuelling tool for HL-2A tokamak has been proposed. The design aims at precise temperature control, easy operation with high reliability and high flexibility. GM-cycle refrigerator and pipe-gun structure have been employed to produce 25 pellets in 25 gun barrels simultaneously and the design aims. have been accomplished. Prime design principle, engineering parameters, structure and layout of the cryostat components as well as calculation of heat load for the cryostat are presented.
基金Project supported bythe U.S .Department of Energy ,Office of Basic Energy Sciences , Materials Science and Engineering Division and Astronautics Corporation of America , Milwaukee , Wisconsin
文摘Magnetic refrigeration is a revolutionary, efficient, environmentally friendly cooling technology, which is on the threshold of commercialization. The magnetic rare earth materials are utilized as the magnetic refrigerants in most cooling devices, and for many cooling application the Nd2Fe14B permanent magnets are employed as the source of the magnetic field. The status of the near room temperature magnetic cooling was reviewed.
文摘Liquefied natural gas(LNG) is the most economical way of transporting natural gas(NG) over long distances. Liquefaction of NG using vapor compression refrigeration system requires high operating and capital cost. Due to lack of systematic design methods for multistage refrigeration cycles, conventional approaches to determine optimal cycle are largely trial-and-error. In this paper a novel mixed integer non-linear programming(MINLP)model is introduced to select optimal synthesis of refrigeration systems to reduce both operating and capital costs of an LNG plant. Better conceptual understanding of design improvement is illustrated on composite curve(CC) and exergetic grand composite curve(EGCC) of pinch analysis diagrams. In this method a superstructure representation of complex refrigeration system is developed to select and optimize key decision variables in refrigeration cycles(i.e. partition temperature, compression configuration, refrigeration features, refrigerant flow rate and economic trade-off). Based on this method a program(LNG-Pro) is developed which integrates VBA,Refprop and Excel MINLP Solver to automate the methodology. Design procedure is applied on a sample LNG plant to illustrate advantages of using this method which shows a 3.3% reduction in total shaft work consumption.
基金Project(12C0379)supported by the Scientific Research Fund of Hunan Province,ChinaProject(13QDZ04)supported by the Scientific Research Foundation for Doctors of Xiangtan University,China
文摘A novel power and cooling system combined system which coupled organic Rankine cycle(ORC) with vapor compression refrigeration cycle(VCRC) was proposed. R245 fa and butane were selected as the working fluid for the power and refrigeration cycle, respectively. A performance comparison and analysis for the combined system was presented. The results show that dual-pressure ORC-VCRC system can achieve an increase of 7.1% in thermal efficiency and 6.7% in exergy efficiency than that of basic ORC-VCRC. Intermediate pressure is a key parameter to both net power and exergy efficiency of dual-pressure ORC-VCRC system. Combined system can produce maximum net power and exergy efficiency at 0.85 MPa for intermediate pressure and 2.4 MPa for high pressure, respectively. However, superheated temperature at expander inlet has little impact on the two indicators. It can achieve higher overall COP, net power and exergy efficiency at smaller difference between condensation temperature and evaporation temperature of VCRC.
基金financially supported by National Natural Science Foundation of China under Grant No.51206140 and No.50890184。
文摘Auto-cascade absorption refrigeration(ACAR) systems are a class of new cycles that can achieve low refrigeration temperatures by utilizing low-quality thermal energy. In this study, the equivalent thermodynamic processes of a reversible ACAR system are established, and illustrated in a T-s diagram. The formula of the coefficient of performance for the reversible ACAR system is derived from the first and second thermodynamic laws. And then, the equivalent cycle of an irreversible ACAR system is established. The irreversible ACAR system is optimized by minimizing entropy generation of the thermodynamic processes. As a result, the optimum distribution ratio of heat fluxes at cascade process, which is defined as a ratio of heat fluxes between a condensing reservoir and cascade reservoir, and the optimum cascade temperature are obtained. Finally, its coefficient of performance and thermodynamic perfect degree are determined with minimum entropy generation.
基金Supported by Shanghai Leading Academic Displine Project(No.B604)
文摘Refrigeration coefficient, ε, is usually calculated by using the First Law of Thermodynamics. In this paper, a new derivation process is introduced through the combination of the Second Law of Thermodynamics with the First Law of Thermodynamics. As a result, two new calculation equations for refrigeration coefficient are proposed. One equation is equivalent to the common method, but its form is a little complicated for real calculation. Another equation is the further simplification, and can be used to calculate the refrigeration coefficient instead of common method with a oermit error.
文摘The analysis of organic regenerative cycles is necessary to verify the possibilities of increasing the work and efficiency of a thermodynamic cycle according to some control parameters. The results obtained from this work can be beneficial in several areas such as solar thermal energy. Simulations of an organic regenerative cycle with up to 4 extractions were carried out in order to analyze the behavior of maximum efficiency and the work generated in the turbine. R134a was used as an organic fluid, used in low temperature cycles. Evaporation temperature data between 60°C and 100°C and superheat temperatures equal to 120°C, 200°C and 300°C were tested for cycle analysis. Thus, it was possible to verify the work behavior and maximum efficiency depending on the number of extractions, superheating temperature and evaporation temperature. The models and simulations were made using the Engineering Equation Solver (EES) software and the results were analyzed in Excel. It was concluded that the maximum efficiency increases with the increase of the evaporation temperature and the number of extractions and decreases with the increase of the superheat temperature. The turbine work grows by increasing the evaporation and superheat temperatures, but decreases with the increase in extractions.
基金National Natural Science Foundation ofChina(No.5 0 2 760 63 )
文摘With COP and dynamic characteristics in refrigeration cycle as criteria,a new metal hydride couple——LaNi 4.61 Mn 0.26 Al 0.13 /La 0.6 Y 0.4 Ni 4.8 Mn 0.2 was selected by establishing calculation procedure and metal hydride selection model.The experimental results show that the refigeration cycle of the selected couple is good in the performance.The recovered waste heat and refrigeration power from exhaust gas of several kinds of automobile are calculated by waste-heat formula,coefficient R Q and COP.Refrigeration cycle of the new couple can satisfy the air-conditioning requirement of truck and car and is not enough in passenger car,according to the respective cooling load.
基金supported by National Foreign Expert Projectunderthecontract No.G2022163009LGuangdong Basic and Applied Basic Research Foundation under the contract No.2023A1515011337+1 种基金Zhuhai Industry-University-Research Cooperation Project under the contract No.ZH22017001210017PWCKey Laboratory of Efficient and Clean Energy Utilization of Guangdong Higher Education Institutes underthecontract No.KLB10004.
文摘The two-stage transcritical CO_(2) refrigeration cycle with dedicated dual-subcooling and mechanical recooling is proposed.The inter-stage pressure is critical for such cycle performances;however,it has not been studied exactly.Therefore,the research aim is to disclose the effect of inter-stage pressure on performances of the proposed cycle.The main work consists of four aspects.Firstly,the comparative study is performed to display advantages of the proposed cycle.Secondly,the key temperatures,heat and power consumptions as well as performance indicators for different inter-stage pressures are analyzed in detail,based on the parametric model.Thirdly,the optimal inter-stage pressure for different conditions is obtained by the nonlinear direct search method.Finally,the economic performance is assessed.It is found that the compressor power of the proposed cycle drops by 12%,and the working temperature lower limit is reduced by 11℃.Furthermore,it is considered that the optimal inter-stage pressure is insensitive to the heat source temperature.The novelty lies in illustrating the effect of inter-stage pressure,obtaining trends of the optimal value,and pointing out the system feasibility.The paper is favorable for design and operation optimization of the proposed system.