The present paper contributes in studying the phase velocities of P- and S-waves in a half space subjected to a compressive initial stress and gravity field. The density and acceleration due to gravity vary quadratica...The present paper contributes in studying the phase velocities of P- and S-waves in a half space subjected to a compressive initial stress and gravity field. The density and acceleration due to gravity vary quadratically along the depth. The dispersion equation is derived in a closed form. It is shown that the phase velocities depend not only on the initial stress, gravity, and direction of propagation but also on the inhomogeneity parameter associated with the density and acceleration due to gravity. Various particular cases are obtained, and the results match with the classical results. Numerical investigations on the phase velocities of P- and S-waves against the wave number are made for various sets of values of the material parameters, and the results are illustrated graphically. The graphical user interface model is developed to generalize the effect.展开更多
基金supported by the Research Fellow of Indian School of Mines in Dhanbad (No. 2010DR0016)
文摘The present paper contributes in studying the phase velocities of P- and S-waves in a half space subjected to a compressive initial stress and gravity field. The density and acceleration due to gravity vary quadratically along the depth. The dispersion equation is derived in a closed form. It is shown that the phase velocities depend not only on the initial stress, gravity, and direction of propagation but also on the inhomogeneity parameter associated with the density and acceleration due to gravity. Various particular cases are obtained, and the results match with the classical results. Numerical investigations on the phase velocities of P- and S-waves against the wave number are made for various sets of values of the material parameters, and the results are illustrated graphically. The graphical user interface model is developed to generalize the effect.