Software Defined Networking(SDN)is programmable by separation of forwarding control through the centralization of the controller.The controller plays the role of the‘brain’that dictates the intelligent part of SDN t...Software Defined Networking(SDN)is programmable by separation of forwarding control through the centralization of the controller.The controller plays the role of the‘brain’that dictates the intelligent part of SDN technology.Various versions of SDN controllers exist as a response to the diverse demands and functions expected of them.There are several SDN controllers available in the open market besides a large number of commercial controllers;some are developed tomeet carrier-grade service levels and one of the recent trends in open-source SDN controllers is the Open Network Operating System(ONOS).This paper presents a comparative study between open source SDN controllers,which are known as Network Controller Platform(NOX),Python-based Network Controller(POX),component-based SDN framework(Ryu),Java-based OpenFlow controller(Floodlight),OpenDayLight(ODL)and ONOS.The discussion is further extended into ONOS architecture,as well as,the evolution of ONOS controllers.This article will review use cases based on ONOS controllers in several application deployments.Moreover,the opportunities and challenges of open source SDN controllers will be discussed,exploring carriergrade ONOS for future real-world deployments,ONOS unique features and identifying the suitable choice of SDN controller for service providers.In addition,we attempt to provide answers to several critical questions relating to the implications of the open-source nature of SDN controllers regarding vendor lock-in,interoperability,and standards compliance,Similarly,real-world use cases of organizations using open-source SDN are highlighted and how the open-source community contributes to the development of SDN controllers.Furthermore,challenges faced by open-source projects,and considerations when choosing an open-source SDN controller are underscored.Then the role of Artificial Intelligence(AI)and Machine Learning(ML)in the evolution of open-source SDN controllers in light of recent research is indicated.In addition,the challenges and limitations associated with deploying open-source SDN controllers in production networks,how can they be mitigated,and finally how opensource SDN controllers handle network security and ensure that network configurations and policies are robust and resilient are presented.Potential opportunities and challenges for future Open SDN deployment are outlined to conclude the article.展开更多
Accurate software cost estimation in Global Software Development(GSD)remains challenging due to reliance on historical data and expert judgments.Traditional models,such as the Constructive Cost Model(COCOMO II),rely h...Accurate software cost estimation in Global Software Development(GSD)remains challenging due to reliance on historical data and expert judgments.Traditional models,such as the Constructive Cost Model(COCOMO II),rely heavily on historical and accurate data.In addition,expert judgment is required to set many input parameters,which can introduce subjectivity and variability in the estimation process.Consequently,there is a need to improve the current GSD models to mitigate reliance on historical data,subjectivity in expert judgment,inadequate consideration of GSD-based cost drivers and limited integration of modern technologies with cost overruns.This study introduces a novel hybrid model that synergizes the COCOMO II with Artificial Neural Networks(ANN)to address these challenges.The proposed hybrid model integrates additional GSD-based cost drivers identified through a systematic literature review and further vetted by industry experts.This article compares the effectiveness of the proposedmodelwith state-of-the-artmachine learning-basedmodels for software cost estimation.Evaluating the NASA 93 dataset by adopting twenty-six GSD-based cost drivers reveals that our hybrid model achieves superior accuracy,outperforming existing state-of-the-artmodels.The findings indicate the potential of combining COCOMO II,ANN,and additional GSD-based cost drivers to transform cost estimation in GSD.展开更多
Software project outcomes heavily depend on natural language requirements,often causing diverse interpretations and issues like ambiguities and incomplete or faulty requirements.Researchers are exploring machine learn...Software project outcomes heavily depend on natural language requirements,often causing diverse interpretations and issues like ambiguities and incomplete or faulty requirements.Researchers are exploring machine learning to predict software bugs,but a more precise and general approach is needed.Accurate bug prediction is crucial for software evolution and user training,prompting an investigation into deep and ensemble learning methods.However,these studies are not generalized and efficient when extended to other datasets.Therefore,this paper proposed a hybrid approach combining multiple techniques to explore their effectiveness on bug identification problems.The methods involved feature selection,which is used to reduce the dimensionality and redundancy of features and select only the relevant ones;transfer learning is used to train and test the model on different datasets to analyze how much of the learning is passed to other datasets,and ensemble method is utilized to explore the increase in performance upon combining multiple classifiers in a model.Four National Aeronautics and Space Administration(NASA)and four Promise datasets are used in the study,showing an increase in the model’s performance by providing better Area Under the Receiver Operating Characteristic Curve(AUC-ROC)values when different classifiers were combined.It reveals that using an amalgam of techniques such as those used in this study,feature selection,transfer learning,and ensemble methods prove helpful in optimizing the software bug prediction models and providing high-performing,useful end mode.展开更多
This paper reviews the adaptive sparse grid discontinuous Galerkin(aSG-DG)method for computing high dimensional partial differential equations(PDEs)and its software implementation.The C++software package called AdaM-D...This paper reviews the adaptive sparse grid discontinuous Galerkin(aSG-DG)method for computing high dimensional partial differential equations(PDEs)and its software implementation.The C++software package called AdaM-DG,implementing the aSG-DG method,is available on GitHub at https://github.com/JuntaoHuang/adaptive-multiresolution-DG.The package is capable of treating a large class of high dimensional linear and nonlinear PDEs.We review the essential components of the algorithm and the functionality of the software,including the multiwavelets used,assembling of bilinear operators,fast matrix-vector product for data with hierarchical structures.We further demonstrate the performance of the package by reporting the numerical error and the CPU cost for several benchmark tests,including linear transport equations,wave equations,and Hamilton-Jacobi(HJ)equations.展开更多
Effort estimation plays a crucial role in software development projects,aiding in resource allocation,project planning,and risk management.Traditional estimation techniques often struggle to provide accurate estimates...Effort estimation plays a crucial role in software development projects,aiding in resource allocation,project planning,and risk management.Traditional estimation techniques often struggle to provide accurate estimates due to the complex nature of software projects.In recent years,machine learning approaches have shown promise in improving the accuracy of effort estimation models.This study proposes a hybrid model that combines Long Short-Term Memory(LSTM)and Random Forest(RF)algorithms to enhance software effort estimation.The proposed hybrid model takes advantage of the strengths of both LSTM and RF algorithms.To evaluate the performance of the hybrid model,an extensive set of software development projects is used as the experimental dataset.The experimental results demonstrate that the proposed hybrid model outperforms traditional estimation techniques in terms of accuracy and reliability.The integration of LSTM and RF enables the model to efficiently capture temporal dependencies and non-linear interactions in the software development data.The hybrid model enhances estimation accuracy,enabling project managers and stakeholders to make more precise predictions of effort needed for upcoming software projects.展开更多
Product detection based on state abstraction technologies in the software product line(SPL)is more complex when compared to a single system.This variability constitutes a new complexity,and the counterexample may be v...Product detection based on state abstraction technologies in the software product line(SPL)is more complex when compared to a single system.This variability constitutes a new complexity,and the counterexample may be valid for some products but spurious for others.In this paper,we found that spurious products are primarily due to the failure states,which correspond to the spurious counterexamples.The violated products correspond to the real counterexamples.Hence,identifying counterexamples is a critical problem in detecting violated products.In our approach,we obtain the violated products through the genuine counterexamples,which have no failure state,to avoid the tedious computation of identifying spurious products dealt with by the existing algorithm.This can be executed in parallel to improve the efficiency further.Experimental results showthat our approach performswell,varying with the growth of the system scale.By analyzing counterexamples in the abstract model,we observed that spurious products occur in the failure state.The approach helps in identifying whether a counterexample is spurious or genuine.The approach also helps to check whether a failure state exists in the counterexample.The performance evaluation shows that the proposed approach helps significantly in improving the efficiency of abstraction-based SPL model checking.展开更多
Modal and damage identification based on ambient excitation can greatly improve the efficiency of high-speed railway bridge vibration detection.This paper first describes the basic principles of stochastic subspace id...Modal and damage identification based on ambient excitation can greatly improve the efficiency of high-speed railway bridge vibration detection.This paper first describes the basic principles of stochastic subspace identification,peak-picking,and frequency domain decomposition method in modal analysis based on ambient excitation,and the effectiveness of these three methods is verified through finite element calculation and numerical simulation,Then the damage element is added to the finite element model to simulate the crack,and the curvature mode difference and the curvature mode area difference square ratio are calculated by using the stochastic subspace identification results to verify their ability of damage identification and location.Finally,the above modal and damage identification techniques are integrated to develop a bridge modal and damage identification software platform.The final results show that all three modal identification methods can accurately identify the vibration frequency and mode shape,both damage identification methods can accurately identify and locate the damage,and the developed software platform is simple and efficient.展开更多
The purpose of software defect prediction is to identify defect-prone code modules to assist software quality assurance teams with the appropriate allocation of resources and labor.In previous software defect predicti...The purpose of software defect prediction is to identify defect-prone code modules to assist software quality assurance teams with the appropriate allocation of resources and labor.In previous software defect prediction studies,transfer learning was effective in solving the problem of inconsistent project data distribution.However,target projects often lack sufficient data,which affects the performance of the transfer learning model.In addition,the presence of uncorrelated features between projects can decrease the prediction accuracy of the transfer learning model.To address these problems,this article propose a software defect prediction method based on stable learning(SDP-SL)that combines code visualization techniques and residual networks.This method first transforms code files into code images using code visualization techniques and then constructs a defect prediction model based on these code images.During the model training process,target project data are not required as prior knowledge.Following the principles of stable learning,this paper dynamically adjusted the weights of source project samples to eliminate dependencies between features,thereby capturing the“invariance mechanism”within the data.This approach explores the genuine relationship between code defect features and labels,thereby enhancing defect prediction performance.To evaluate the performance of SDP-SL,this article conducted comparative experiments on 10 open-source projects in the PROMISE dataset.The experimental results demonstrated that in terms of the F-measure,the proposed SDP-SL method outperformed other within-project defect prediction methods by 2.11%-44.03%.In cross-project defect prediction,the SDP-SL method provided an improvement of 5.89%-25.46% in prediction performance compared to other cross-project defect prediction methods.Therefore,SDP-SL can effectively enhance within-and cross-project defect predictions.展开更多
Recently,researchers have shown increasing interest in combining more than one programming model into systems running on high performance computing systems(HPCs)to achieve exascale by applying parallelism at multiple ...Recently,researchers have shown increasing interest in combining more than one programming model into systems running on high performance computing systems(HPCs)to achieve exascale by applying parallelism at multiple levels.Combining different programming paradigms,such as Message Passing Interface(MPI),Open Multiple Processing(OpenMP),and Open Accelerators(OpenACC),can increase computation speed and improve performance.During the integration of multiple models,the probability of runtime errors increases,making their detection difficult,especially in the absence of testing techniques that can detect these errors.Numerous studies have been conducted to identify these errors,but no technique exists for detecting errors in three-level programming models.Despite the increasing research that integrates the three programming models,MPI,OpenMP,and OpenACC,a testing technology to detect runtime errors,such as deadlocks and race conditions,which can arise from this integration has not been developed.Therefore,this paper begins with a definition and explanation of runtime errors that result fromintegrating the three programming models that compilers cannot detect.For the first time,this paper presents a classification of operational errors that can result from the integration of the three models.This paper also proposes a parallel hybrid testing technique for detecting runtime errors in systems built in the C++programming language that uses the triple programming models MPI,OpenMP,and OpenACC.This hybrid technology combines static technology and dynamic technology,given that some errors can be detected using static techniques,whereas others can be detected using dynamic technology.The hybrid technique can detect more errors because it combines two distinct technologies.The proposed static technology detects a wide range of error types in less time,whereas a portion of the potential errors that may or may not occur depending on the 4502 CMC,2023,vol.74,no.2 operating environment are left to the dynamic technology,which completes the validation.展开更多
This research investigates the ecological importance,changes,and status of mangrove wetlands along China’s coastline.Visual interpretation,geological surveys,and ISO clustering unsupervised classification methods are...This research investigates the ecological importance,changes,and status of mangrove wetlands along China’s coastline.Visual interpretation,geological surveys,and ISO clustering unsupervised classification methods are employed to interpret mangrove distribution from remote sensing images from 2021,utilizing ArcGIS software platform.Furthermore,the carbon storage capacity of mangrove wetlands is quantified using the carbon storage module of InVEST model.Results show that the mangrove wetlands in China covered an area of 278.85 km2 in 2021,predominantly distributed in Hainan,Guangxi,Guangdong,Fujian,Zhejiang,Taiwan,Hong Kong,and Macao.The total carbon storage is assessed at 2.11×10^(6) t,with specific regional data provided.Trends since the 1950s reveal periods of increase,decrease,sharp decrease,and slight-steady increases in mangrove areas in China.An important finding is the predominant replacement of natural coastlines adjacent to mangrove wetlands by artificial ones,highlighting the need for creating suitable spaces for mangrove restoration.This study is poised to guide future mangroverelated investigations and conservation strategies.展开更多
Software Product Line(SPL)is a group of software-intensive systems that share common and variable resources for developing a particular system.The feature model is a tree-type structure used to manage SPL’s common an...Software Product Line(SPL)is a group of software-intensive systems that share common and variable resources for developing a particular system.The feature model is a tree-type structure used to manage SPL’s common and variable features with their different relations and problem of Crosstree Constraints(CTC).CTC problems exist in groups of common and variable features among the sub-tree of feature models more diverse in Internet of Things(IoT)devices because different Internet devices and protocols are communicated.Therefore,managing the CTC problem to achieve valid product configuration in IoT-based SPL is more complex,time-consuming,and hard.However,the CTC problem needs to be considered in previously proposed approaches such as Commonality VariabilityModeling of Features(COVAMOF)andGenarch+tool;therefore,invalid products are generated.This research has proposed a novel approach Binary Oriented Feature Selection Crosstree Constraints(BOFS-CTC),to find all possible valid products by selecting the features according to cardinality constraints and cross-tree constraint problems in the featuremodel of SPL.BOFS-CTC removes the invalid products at the early stage of feature selection for the product configuration.Furthermore,this research developed the BOFS-CTC algorithm and applied it to,IoT-based feature models.The findings of this research are that no relationship constraints and CTC violations occur and drive the valid feature product configurations for the application development by removing the invalid product configurations.The accuracy of BOFS-CTC is measured by the integration sampling technique,where different valid product configurations are compared with the product configurations derived by BOFS-CTC and found 100%correct.Using BOFS-CTC eliminates the testing cost and development effort of invalid SPL products.展开更多
Software engineering is a highly practical major,and students need a lot of hands-on practice to transform the theoretical contents learned in class into the practical ability to solve practical problems,so practical ...Software engineering is a highly practical major,and students need a lot of hands-on practice to transform the theoretical contents learned in class into the practical ability to solve practical problems,so practical courses are an essential and important part in the process of training talents in software engineering.From the point of view of cultivating talents in software engineering,this paper expounds the important position of practical courses in software engineering in the process of cultivating talents,analyzes the problems in the existing practical courses,and puts forward the construction ideas and characteristics of practical courses in software engineering which strengthen the foundation,advance steadily,and face the output.Taking the practical course for software system development as an example,this paper introduces in detail the concrete implementation process,achievements,existing problems and countermeasures of the course.展开更多
In this paper, the test suite construction for GUI (Graphical User Interface) software may be executed centered on grey-box approach with the prior test design of window access controls for unit testing, including fro...In this paper, the test suite construction for GUI (Graphical User Interface) software may be executed centered on grey-box approach with the prior test design of window access controls for unit testing, including front-end method of white box and follow-up black box method for integration testing. Moreover, two key opinions are proposed for the test suite construction for GUI software, the first one is that the “Triple-step method” should be used for unit testing with the prior disposing of data boundary value testing of input controls, and another one is that the “Grey-box approach” should be applied in integration testing for GUI software with necessary testing preparation in the precondition. At the same time, the testing of baseline version and the incremental testing should be considered for the test case construction to coordinate with the whole evolution of software product today. Additionally, all our opinion and thought are verified and tested with a typical case of GUI software—PQMS (Product Quality Monitoring Software/System), and results indicate that these methods and specific disposing are practical and effective.展开更多
The Message Passing Interface (MPI) is a widely accepted standard for parallel computing on distributed memorysystems.However, MPI implementations can contain defects that impact the reliability and performance of par...The Message Passing Interface (MPI) is a widely accepted standard for parallel computing on distributed memorysystems.However, MPI implementations can contain defects that impact the reliability and performance of parallelapplications. Detecting and correcting these defects is crucial, yet there is a lack of published models specificallydesigned for correctingMPI defects. To address this, we propose a model for detecting and correcting MPI defects(DC_MPI), which aims to detect and correct defects in various types of MPI communication, including blockingpoint-to-point (BPTP), nonblocking point-to-point (NBPTP), and collective communication (CC). The defectsaddressed by the DC_MPI model include illegal MPI calls, deadlocks (DL), race conditions (RC), and messagemismatches (MM). To assess the effectiveness of the DC_MPI model, we performed experiments on a datasetconsisting of 40 MPI codes. The results indicate that the model achieved a detection rate of 37 out of 40 codes,resulting in an overall detection accuracy of 92.5%. Additionally, the execution duration of the DC_MPI modelranged from 0.81 to 1.36 s. These findings show that the DC_MPI model is useful in detecting and correctingdefects in MPI implementations, thereby enhancing the reliability and performance of parallel applications. TheDC_MPImodel fills an important research gap and provides a valuable tool for improving the quality ofMPI-basedparallel computing systems.展开更多
Software testing is a critical phase due to misconceptions about ambiguities in the requirements during specification,which affect the testing process.Therefore,it is difficult to identify all faults in software.As re...Software testing is a critical phase due to misconceptions about ambiguities in the requirements during specification,which affect the testing process.Therefore,it is difficult to identify all faults in software.As requirement changes continuously,it increases the irrelevancy and redundancy during testing.Due to these challenges;fault detection capability decreases and there arises a need to improve the testing process,which is based on changes in requirements specification.In this research,we have developed a model to resolve testing challenges through requirement prioritization and prediction in an agile-based environment.The research objective is to identify the most relevant and meaningful requirements through semantic analysis for correct change analysis.Then compute the similarity of requirements through case-based reasoning,which predicted the requirements for reuse and restricted to error-based requirements.Afterward,the apriori algorithm mapped out requirement frequency to select relevant test cases based on frequently reused or not reused test cases to increase the fault detection rate.Furthermore,the proposed model was evaluated by conducting experiments.The results showed that requirement redundancy and irrelevancy improved due to semantic analysis,which correctly predicted the requirements,increasing the fault detection rate and resulting in high user satisfaction.The predicted requirements are mapped into test cases,increasing the fault detection rate after changes to achieve higher user satisfaction.Therefore,the model improves the redundancy and irrelevancy of requirements by more than 90%compared to other clustering methods and the analytical hierarchical process,achieving an 80%fault detection rate at an earlier stage.Hence,it provides guidelines for practitioners and researchers in the modern era.In the future,we will provide the working prototype of this model for proof of concept.展开更多
Software Development Life Cycle (SDLC) is one of the major ingredients for the development of efficient software systems within a time frame and low-cost involvement. From the literature, it is evident that there are ...Software Development Life Cycle (SDLC) is one of the major ingredients for the development of efficient software systems within a time frame and low-cost involvement. From the literature, it is evident that there are various kinds of process models that are used by the software industries for the development of small, medium and long-term software projects, but many of them do not cover risk management. It is quite obvious that the improper selection of the software development process model leads to failure of the software products as it is time bound activity. In the present work, a new software development process model is proposed which covers the risks at any stage of the development of the software product. The model is named a Hemant-Vipin (HV) process model and may be helpful for the software industries for development of the efficient software products and timely delivery at the end of the client. The efficiency of the HV process model is observed by considering various kinds of factors like requirement clarity, user feedback, change agility, predictability, risk identification, practical implementation, customer satisfaction, incremental development, use of ready-made components, quick design, resource organization and many more and found through a case study that the presented approach covers many of parameters in comparison of the existing process models. .展开更多
Agile Transformations are challenging processes for organizations that look to extend the benefits of Agile philosophy and methods beyond software engineering.Despite the impact of these transformations on orga-nizati...Agile Transformations are challenging processes for organizations that look to extend the benefits of Agile philosophy and methods beyond software engineering.Despite the impact of these transformations on orga-nizations,they have not been extensively studied in academia.We conducted a study grounded in workshops and interviews with 99 participants from 30 organizations,including organizations undergoing transformations(“final organizations”)and companies supporting these processes(“consultants”).The study aims to understand the motivations,objectives,and factors driving and challenging these transformations.Over 700 responses were collected to the question and categorized into 32 objectives.The findings show that organizations primarily aim to achieve customer centricity and adaptability,both with 8%of the mentions.Other primary important objectives,with above 4%of mentions,include alignment of goals,lean delivery,sustainable processes,and a flatter,more team-based organizational structure.We also detect discrepancies in perspectives between the objectives identified by the two kinds of organizations and the existing agile literature and models.This misalignment highlights the need for practitioners to understand with the practical realities the organizations face.展开更多
Purpose: To clarify the effectiveness of 3-D delivery animation software for the mother’s and husband’s satisfaction with delivery. Subjects and Method: We independently developed a software application used to disp...Purpose: To clarify the effectiveness of 3-D delivery animation software for the mother’s and husband’s satisfaction with delivery. Subjects and Method: We independently developed a software application used to display the pelvic region and explain the labor process. The study involved a collaboration with hospital staff who recruited 18 primiparous and 18 multiparous mothers who were hospitalized for delivery at Facility A. The midwife explained the process of delivery using the “Delivery Animation Software”. A self-administered, anonymous questionnaire was distributed and analyzed separately for primiparous and multiparous mothers and their husbands. Results: 1) For both primiparous and multiparous couples, both mothers and their husbands gained a significantly higher level of understanding after delivery than during pregnancy. 2) The Self-Evaluation Scale for Experience of Delivery results were as follows: “I did my best for the baby even if it was painful” was selected more often for “birth coping skills”;“reliable medical staff” was selected more often for “physiological birth process”;“the birth progressed as I expected” was selected frequently by primiparous mothers;and “the birth progressed smoothly” was selected often by multiparous mothers. 3) In terms of husbands’ satisfaction with the delivery, “I was satisfied with the delivery”, “I was given an easy-to-understand explanation”, and “They explained the process to me” was selected of primiparous and multiparous fathers. 4) All primiparous and multiparous mothers positively evaluated whether the delivery animation was helpful in understanding the process of delivery. Conclusion: The delivery animation was effective in improving the understanding and satisfaction of both the mothers and their husbands.展开更多
基金supported by UniversitiKebangsaan Malaysia,under Dana Impak Perdana 2.0.(Ref:DIP–2022–020).
文摘Software Defined Networking(SDN)is programmable by separation of forwarding control through the centralization of the controller.The controller plays the role of the‘brain’that dictates the intelligent part of SDN technology.Various versions of SDN controllers exist as a response to the diverse demands and functions expected of them.There are several SDN controllers available in the open market besides a large number of commercial controllers;some are developed tomeet carrier-grade service levels and one of the recent trends in open-source SDN controllers is the Open Network Operating System(ONOS).This paper presents a comparative study between open source SDN controllers,which are known as Network Controller Platform(NOX),Python-based Network Controller(POX),component-based SDN framework(Ryu),Java-based OpenFlow controller(Floodlight),OpenDayLight(ODL)and ONOS.The discussion is further extended into ONOS architecture,as well as,the evolution of ONOS controllers.This article will review use cases based on ONOS controllers in several application deployments.Moreover,the opportunities and challenges of open source SDN controllers will be discussed,exploring carriergrade ONOS for future real-world deployments,ONOS unique features and identifying the suitable choice of SDN controller for service providers.In addition,we attempt to provide answers to several critical questions relating to the implications of the open-source nature of SDN controllers regarding vendor lock-in,interoperability,and standards compliance,Similarly,real-world use cases of organizations using open-source SDN are highlighted and how the open-source community contributes to the development of SDN controllers.Furthermore,challenges faced by open-source projects,and considerations when choosing an open-source SDN controller are underscored.Then the role of Artificial Intelligence(AI)and Machine Learning(ML)in the evolution of open-source SDN controllers in light of recent research is indicated.In addition,the challenges and limitations associated with deploying open-source SDN controllers in production networks,how can they be mitigated,and finally how opensource SDN controllers handle network security and ensure that network configurations and policies are robust and resilient are presented.Potential opportunities and challenges for future Open SDN deployment are outlined to conclude the article.
文摘Accurate software cost estimation in Global Software Development(GSD)remains challenging due to reliance on historical data and expert judgments.Traditional models,such as the Constructive Cost Model(COCOMO II),rely heavily on historical and accurate data.In addition,expert judgment is required to set many input parameters,which can introduce subjectivity and variability in the estimation process.Consequently,there is a need to improve the current GSD models to mitigate reliance on historical data,subjectivity in expert judgment,inadequate consideration of GSD-based cost drivers and limited integration of modern technologies with cost overruns.This study introduces a novel hybrid model that synergizes the COCOMO II with Artificial Neural Networks(ANN)to address these challenges.The proposed hybrid model integrates additional GSD-based cost drivers identified through a systematic literature review and further vetted by industry experts.This article compares the effectiveness of the proposedmodelwith state-of-the-artmachine learning-basedmodels for software cost estimation.Evaluating the NASA 93 dataset by adopting twenty-six GSD-based cost drivers reveals that our hybrid model achieves superior accuracy,outperforming existing state-of-the-artmodels.The findings indicate the potential of combining COCOMO II,ANN,and additional GSD-based cost drivers to transform cost estimation in GSD.
基金This Research is funded by Researchers Supporting Project Number(RSPD2024R947),King Saud University,Riyadh,Saudi Arabia.
文摘Software project outcomes heavily depend on natural language requirements,often causing diverse interpretations and issues like ambiguities and incomplete or faulty requirements.Researchers are exploring machine learning to predict software bugs,but a more precise and general approach is needed.Accurate bug prediction is crucial for software evolution and user training,prompting an investigation into deep and ensemble learning methods.However,these studies are not generalized and efficient when extended to other datasets.Therefore,this paper proposed a hybrid approach combining multiple techniques to explore their effectiveness on bug identification problems.The methods involved feature selection,which is used to reduce the dimensionality and redundancy of features and select only the relevant ones;transfer learning is used to train and test the model on different datasets to analyze how much of the learning is passed to other datasets,and ensemble method is utilized to explore the increase in performance upon combining multiple classifiers in a model.Four National Aeronautics and Space Administration(NASA)and four Promise datasets are used in the study,showing an increase in the model’s performance by providing better Area Under the Receiver Operating Characteristic Curve(AUC-ROC)values when different classifiers were combined.It reveals that using an amalgam of techniques such as those used in this study,feature selection,transfer learning,and ensemble methods prove helpful in optimizing the software bug prediction models and providing high-performing,useful end mode.
基金supported by the NSF grant DMS-2111383Air Force Office of Scientific Research FA9550-18-1-0257the NSF grant DMS-2011838.
文摘This paper reviews the adaptive sparse grid discontinuous Galerkin(aSG-DG)method for computing high dimensional partial differential equations(PDEs)and its software implementation.The C++software package called AdaM-DG,implementing the aSG-DG method,is available on GitHub at https://github.com/JuntaoHuang/adaptive-multiresolution-DG.The package is capable of treating a large class of high dimensional linear and nonlinear PDEs.We review the essential components of the algorithm and the functionality of the software,including the multiwavelets used,assembling of bilinear operators,fast matrix-vector product for data with hierarchical structures.We further demonstrate the performance of the package by reporting the numerical error and the CPU cost for several benchmark tests,including linear transport equations,wave equations,and Hamilton-Jacobi(HJ)equations.
文摘Effort estimation plays a crucial role in software development projects,aiding in resource allocation,project planning,and risk management.Traditional estimation techniques often struggle to provide accurate estimates due to the complex nature of software projects.In recent years,machine learning approaches have shown promise in improving the accuracy of effort estimation models.This study proposes a hybrid model that combines Long Short-Term Memory(LSTM)and Random Forest(RF)algorithms to enhance software effort estimation.The proposed hybrid model takes advantage of the strengths of both LSTM and RF algorithms.To evaluate the performance of the hybrid model,an extensive set of software development projects is used as the experimental dataset.The experimental results demonstrate that the proposed hybrid model outperforms traditional estimation techniques in terms of accuracy and reliability.The integration of LSTM and RF enables the model to efficiently capture temporal dependencies and non-linear interactions in the software development data.The hybrid model enhances estimation accuracy,enabling project managers and stakeholders to make more precise predictions of effort needed for upcoming software projects.
基金supported by the Fund of ExcellentYouth Scientific and Technological Innovation Team of Hubei’s Universities(Project No:T201818)Science and Technology Research Program of Hubei Provincial Education Department(Project No:Q20143005)Guiding project of scientific research plan of Hubei Provincial Department of Education(Project No:B2021261).
文摘Product detection based on state abstraction technologies in the software product line(SPL)is more complex when compared to a single system.This variability constitutes a new complexity,and the counterexample may be valid for some products but spurious for others.In this paper,we found that spurious products are primarily due to the failure states,which correspond to the spurious counterexamples.The violated products correspond to the real counterexamples.Hence,identifying counterexamples is a critical problem in detecting violated products.In our approach,we obtain the violated products through the genuine counterexamples,which have no failure state,to avoid the tedious computation of identifying spurious products dealt with by the existing algorithm.This can be executed in parallel to improve the efficiency further.Experimental results showthat our approach performswell,varying with the growth of the system scale.By analyzing counterexamples in the abstract model,we observed that spurious products occur in the failure state.The approach helps in identifying whether a counterexample is spurious or genuine.The approach also helps to check whether a failure state exists in the counterexample.The performance evaluation shows that the proposed approach helps significantly in improving the efficiency of abstraction-based SPL model checking.
文摘Modal and damage identification based on ambient excitation can greatly improve the efficiency of high-speed railway bridge vibration detection.This paper first describes the basic principles of stochastic subspace identification,peak-picking,and frequency domain decomposition method in modal analysis based on ambient excitation,and the effectiveness of these three methods is verified through finite element calculation and numerical simulation,Then the damage element is added to the finite element model to simulate the crack,and the curvature mode difference and the curvature mode area difference square ratio are calculated by using the stochastic subspace identification results to verify their ability of damage identification and location.Finally,the above modal and damage identification techniques are integrated to develop a bridge modal and damage identification software platform.The final results show that all three modal identification methods can accurately identify the vibration frequency and mode shape,both damage identification methods can accurately identify and locate the damage,and the developed software platform is simple and efficient.
基金supported by the NationalNatural Science Foundation of China(Grant No.61867004)the Youth Fund of the National Natural Science Foundation of China(Grant No.41801288).
文摘The purpose of software defect prediction is to identify defect-prone code modules to assist software quality assurance teams with the appropriate allocation of resources and labor.In previous software defect prediction studies,transfer learning was effective in solving the problem of inconsistent project data distribution.However,target projects often lack sufficient data,which affects the performance of the transfer learning model.In addition,the presence of uncorrelated features between projects can decrease the prediction accuracy of the transfer learning model.To address these problems,this article propose a software defect prediction method based on stable learning(SDP-SL)that combines code visualization techniques and residual networks.This method first transforms code files into code images using code visualization techniques and then constructs a defect prediction model based on these code images.During the model training process,target project data are not required as prior knowledge.Following the principles of stable learning,this paper dynamically adjusted the weights of source project samples to eliminate dependencies between features,thereby capturing the“invariance mechanism”within the data.This approach explores the genuine relationship between code defect features and labels,thereby enhancing defect prediction performance.To evaluate the performance of SDP-SL,this article conducted comparative experiments on 10 open-source projects in the PROMISE dataset.The experimental results demonstrated that in terms of the F-measure,the proposed SDP-SL method outperformed other within-project defect prediction methods by 2.11%-44.03%.In cross-project defect prediction,the SDP-SL method provided an improvement of 5.89%-25.46% in prediction performance compared to other cross-project defect prediction methods.Therefore,SDP-SL can effectively enhance within-and cross-project defect predictions.
基金[King Abdulaziz University][Deanship of Scientific Research]Grant Number[KEP-PHD-20-611-42].
文摘Recently,researchers have shown increasing interest in combining more than one programming model into systems running on high performance computing systems(HPCs)to achieve exascale by applying parallelism at multiple levels.Combining different programming paradigms,such as Message Passing Interface(MPI),Open Multiple Processing(OpenMP),and Open Accelerators(OpenACC),can increase computation speed and improve performance.During the integration of multiple models,the probability of runtime errors increases,making their detection difficult,especially in the absence of testing techniques that can detect these errors.Numerous studies have been conducted to identify these errors,but no technique exists for detecting errors in three-level programming models.Despite the increasing research that integrates the three programming models,MPI,OpenMP,and OpenACC,a testing technology to detect runtime errors,such as deadlocks and race conditions,which can arise from this integration has not been developed.Therefore,this paper begins with a definition and explanation of runtime errors that result fromintegrating the three programming models that compilers cannot detect.For the first time,this paper presents a classification of operational errors that can result from the integration of the three models.This paper also proposes a parallel hybrid testing technique for detecting runtime errors in systems built in the C++programming language that uses the triple programming models MPI,OpenMP,and OpenACC.This hybrid technology combines static technology and dynamic technology,given that some errors can be detected using static techniques,whereas others can be detected using dynamic technology.The hybrid technique can detect more errors because it combines two distinct technologies.The proposed static technology detects a wide range of error types in less time,whereas a portion of the potential errors that may or may not occur depending on the 4502 CMC,2023,vol.74,no.2 operating environment are left to the dynamic technology,which completes the validation.
基金supported by China Geological Survey(DD20211301).
文摘This research investigates the ecological importance,changes,and status of mangrove wetlands along China’s coastline.Visual interpretation,geological surveys,and ISO clustering unsupervised classification methods are employed to interpret mangrove distribution from remote sensing images from 2021,utilizing ArcGIS software platform.Furthermore,the carbon storage capacity of mangrove wetlands is quantified using the carbon storage module of InVEST model.Results show that the mangrove wetlands in China covered an area of 278.85 km2 in 2021,predominantly distributed in Hainan,Guangxi,Guangdong,Fujian,Zhejiang,Taiwan,Hong Kong,and Macao.The total carbon storage is assessed at 2.11×10^(6) t,with specific regional data provided.Trends since the 1950s reveal periods of increase,decrease,sharp decrease,and slight-steady increases in mangrove areas in China.An important finding is the predominant replacement of natural coastlines adjacent to mangrove wetlands by artificial ones,highlighting the need for creating suitable spaces for mangrove restoration.This study is poised to guide future mangroverelated investigations and conservation strategies.
文摘Software Product Line(SPL)is a group of software-intensive systems that share common and variable resources for developing a particular system.The feature model is a tree-type structure used to manage SPL’s common and variable features with their different relations and problem of Crosstree Constraints(CTC).CTC problems exist in groups of common and variable features among the sub-tree of feature models more diverse in Internet of Things(IoT)devices because different Internet devices and protocols are communicated.Therefore,managing the CTC problem to achieve valid product configuration in IoT-based SPL is more complex,time-consuming,and hard.However,the CTC problem needs to be considered in previously proposed approaches such as Commonality VariabilityModeling of Features(COVAMOF)andGenarch+tool;therefore,invalid products are generated.This research has proposed a novel approach Binary Oriented Feature Selection Crosstree Constraints(BOFS-CTC),to find all possible valid products by selecting the features according to cardinality constraints and cross-tree constraint problems in the featuremodel of SPL.BOFS-CTC removes the invalid products at the early stage of feature selection for the product configuration.Furthermore,this research developed the BOFS-CTC algorithm and applied it to,IoT-based feature models.The findings of this research are that no relationship constraints and CTC violations occur and drive the valid feature product configurations for the application development by removing the invalid product configurations.The accuracy of BOFS-CTC is measured by the integration sampling technique,where different valid product configurations are compared with the product configurations derived by BOFS-CTC and found 100%correct.Using BOFS-CTC eliminates the testing cost and development effort of invalid SPL products.
文摘Software engineering is a highly practical major,and students need a lot of hands-on practice to transform the theoretical contents learned in class into the practical ability to solve practical problems,so practical courses are an essential and important part in the process of training talents in software engineering.From the point of view of cultivating talents in software engineering,this paper expounds the important position of practical courses in software engineering in the process of cultivating talents,analyzes the problems in the existing practical courses,and puts forward the construction ideas and characteristics of practical courses in software engineering which strengthen the foundation,advance steadily,and face the output.Taking the practical course for software system development as an example,this paper introduces in detail the concrete implementation process,achievements,existing problems and countermeasures of the course.
文摘In this paper, the test suite construction for GUI (Graphical User Interface) software may be executed centered on grey-box approach with the prior test design of window access controls for unit testing, including front-end method of white box and follow-up black box method for integration testing. Moreover, two key opinions are proposed for the test suite construction for GUI software, the first one is that the “Triple-step method” should be used for unit testing with the prior disposing of data boundary value testing of input controls, and another one is that the “Grey-box approach” should be applied in integration testing for GUI software with necessary testing preparation in the precondition. At the same time, the testing of baseline version and the incremental testing should be considered for the test case construction to coordinate with the whole evolution of software product today. Additionally, all our opinion and thought are verified and tested with a typical case of GUI software—PQMS (Product Quality Monitoring Software/System), and results indicate that these methods and specific disposing are practical and effective.
基金the Deanship of Scientific Research at King Abdulaziz University,Jeddah,Saudi Arabia under the Grant No.RG-12-611-43.
文摘The Message Passing Interface (MPI) is a widely accepted standard for parallel computing on distributed memorysystems.However, MPI implementations can contain defects that impact the reliability and performance of parallelapplications. Detecting and correcting these defects is crucial, yet there is a lack of published models specificallydesigned for correctingMPI defects. To address this, we propose a model for detecting and correcting MPI defects(DC_MPI), which aims to detect and correct defects in various types of MPI communication, including blockingpoint-to-point (BPTP), nonblocking point-to-point (NBPTP), and collective communication (CC). The defectsaddressed by the DC_MPI model include illegal MPI calls, deadlocks (DL), race conditions (RC), and messagemismatches (MM). To assess the effectiveness of the DC_MPI model, we performed experiments on a datasetconsisting of 40 MPI codes. The results indicate that the model achieved a detection rate of 37 out of 40 codes,resulting in an overall detection accuracy of 92.5%. Additionally, the execution duration of the DC_MPI modelranged from 0.81 to 1.36 s. These findings show that the DC_MPI model is useful in detecting and correctingdefects in MPI implementations, thereby enhancing the reliability and performance of parallel applications. TheDC_MPImodel fills an important research gap and provides a valuable tool for improving the quality ofMPI-basedparallel computing systems.
文摘Software testing is a critical phase due to misconceptions about ambiguities in the requirements during specification,which affect the testing process.Therefore,it is difficult to identify all faults in software.As requirement changes continuously,it increases the irrelevancy and redundancy during testing.Due to these challenges;fault detection capability decreases and there arises a need to improve the testing process,which is based on changes in requirements specification.In this research,we have developed a model to resolve testing challenges through requirement prioritization and prediction in an agile-based environment.The research objective is to identify the most relevant and meaningful requirements through semantic analysis for correct change analysis.Then compute the similarity of requirements through case-based reasoning,which predicted the requirements for reuse and restricted to error-based requirements.Afterward,the apriori algorithm mapped out requirement frequency to select relevant test cases based on frequently reused or not reused test cases to increase the fault detection rate.Furthermore,the proposed model was evaluated by conducting experiments.The results showed that requirement redundancy and irrelevancy improved due to semantic analysis,which correctly predicted the requirements,increasing the fault detection rate and resulting in high user satisfaction.The predicted requirements are mapped into test cases,increasing the fault detection rate after changes to achieve higher user satisfaction.Therefore,the model improves the redundancy and irrelevancy of requirements by more than 90%compared to other clustering methods and the analytical hierarchical process,achieving an 80%fault detection rate at an earlier stage.Hence,it provides guidelines for practitioners and researchers in the modern era.In the future,we will provide the working prototype of this model for proof of concept.
文摘Software Development Life Cycle (SDLC) is one of the major ingredients for the development of efficient software systems within a time frame and low-cost involvement. From the literature, it is evident that there are various kinds of process models that are used by the software industries for the development of small, medium and long-term software projects, but many of them do not cover risk management. It is quite obvious that the improper selection of the software development process model leads to failure of the software products as it is time bound activity. In the present work, a new software development process model is proposed which covers the risks at any stage of the development of the software product. The model is named a Hemant-Vipin (HV) process model and may be helpful for the software industries for development of the efficient software products and timely delivery at the end of the client. The efficiency of the HV process model is observed by considering various kinds of factors like requirement clarity, user feedback, change agility, predictability, risk identification, practical implementation, customer satisfaction, incremental development, use of ready-made components, quick design, resource organization and many more and found through a case study that the presented approach covers many of parameters in comparison of the existing process models. .
基金funding from the European Commission for the Ruralities Project(grant agreement no.101060876).
文摘Agile Transformations are challenging processes for organizations that look to extend the benefits of Agile philosophy and methods beyond software engineering.Despite the impact of these transformations on orga-nizations,they have not been extensively studied in academia.We conducted a study grounded in workshops and interviews with 99 participants from 30 organizations,including organizations undergoing transformations(“final organizations”)and companies supporting these processes(“consultants”).The study aims to understand the motivations,objectives,and factors driving and challenging these transformations.Over 700 responses were collected to the question and categorized into 32 objectives.The findings show that organizations primarily aim to achieve customer centricity and adaptability,both with 8%of the mentions.Other primary important objectives,with above 4%of mentions,include alignment of goals,lean delivery,sustainable processes,and a flatter,more team-based organizational structure.We also detect discrepancies in perspectives between the objectives identified by the two kinds of organizations and the existing agile literature and models.This misalignment highlights the need for practitioners to understand with the practical realities the organizations face.
文摘Purpose: To clarify the effectiveness of 3-D delivery animation software for the mother’s and husband’s satisfaction with delivery. Subjects and Method: We independently developed a software application used to display the pelvic region and explain the labor process. The study involved a collaboration with hospital staff who recruited 18 primiparous and 18 multiparous mothers who were hospitalized for delivery at Facility A. The midwife explained the process of delivery using the “Delivery Animation Software”. A self-administered, anonymous questionnaire was distributed and analyzed separately for primiparous and multiparous mothers and their husbands. Results: 1) For both primiparous and multiparous couples, both mothers and their husbands gained a significantly higher level of understanding after delivery than during pregnancy. 2) The Self-Evaluation Scale for Experience of Delivery results were as follows: “I did my best for the baby even if it was painful” was selected more often for “birth coping skills”;“reliable medical staff” was selected more often for “physiological birth process”;“the birth progressed as I expected” was selected frequently by primiparous mothers;and “the birth progressed smoothly” was selected often by multiparous mothers. 3) In terms of husbands’ satisfaction with the delivery, “I was satisfied with the delivery”, “I was given an easy-to-understand explanation”, and “They explained the process to me” was selected of primiparous and multiparous fathers. 4) All primiparous and multiparous mothers positively evaluated whether the delivery animation was helpful in understanding the process of delivery. Conclusion: The delivery animation was effective in improving the understanding and satisfaction of both the mothers and their husbands.