期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Automatic detection of breast lesions in automated 3D breast ultrasound with cross-organ transfer learning
1
作者 Lingyun BAO Zhengrui HUANG +7 位作者 Zehui LIN Yue SUN Hui CHEN You LI Zhang LI Xiaochen YUAN Lin XU Tao TAN 《虚拟现实与智能硬件(中英文)》 EI 2024年第3期239-251,共13页
Background Deep convolutional neural networks have garnered considerable attention in numerous machine learning applications,particularly in visual recognition tasks such as image and video analyses.There is a growing... Background Deep convolutional neural networks have garnered considerable attention in numerous machine learning applications,particularly in visual recognition tasks such as image and video analyses.There is a growing interest in applying this technology to diverse applications in medical image analysis.Automated three dimensional Breast Ultrasound is a vital tool for detecting breast cancer,and computer-assisted diagnosis software,developed based on deep learning,can effectively assist radiologists in diagnosis.However,the network model is prone to overfitting during training,owing to challenges such as insufficient training data.This study attempts to solve the problem caused by small datasets and improve model detection performance.Methods We propose a breast cancer detection framework based on deep learning(a transfer learning method based on cross-organ cancer detection)and a contrastive learning method based on breast imaging reporting and data systems(BI-RADS).Results When using cross organ transfer learning and BIRADS based contrastive learning,the average sensitivity of the model increased by a maximum of 16.05%.Conclusion Our experiments have demonstrated that the parameters and experiences of cross-organ cancer detection can be mutually referenced,and contrastive learning method based on BI-RADS can improve the detection performance of the model. 展开更多
关键词 breast ultrasound automated 3d breast ultrasound breast cancers deep learning Transfer learning Convolutional neural networks Computer-aided diagnosis Cross organ learning
下载PDF
基于ABUS图像的轻量型切口疝补片计算机辅助检测与评估算法 被引量:4
2
作者 颜光前 赵柳 +3 位作者 吴俊 陈悦 陈林 裘之瑛 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第5期768-779,共12页
由于人工检阅自动化三维乳腺超声(ABUS)图像极其耗时,而且极易出现对微弱异常区域的漏诊.为了提高ABUS图像检阅效率并减少漏诊,提出一套基于ABUS图像的轻量型切口疝补片计算机辅助检测与评估算法.算法首先使用纹理特征萃取算法自动量化... 由于人工检阅自动化三维乳腺超声(ABUS)图像极其耗时,而且极易出现对微弱异常区域的漏诊.为了提高ABUS图像检阅效率并减少漏诊,提出一套基于ABUS图像的轻量型切口疝补片计算机辅助检测与评估算法.算法首先使用纹理特征萃取算法自动量化提取三维感兴趣容积中的待分类区域的相关纹理特征参数,以便用于对补片和筋膜的区分;然后,针对二维纹理参数对切口疝补片术后卷曲、收缩等空间变换较为敏感的问题,引入三维纹理参数和三维位置参数来提高轻量型补片分类识别算法的鲁棒性;最后,使用类间距算法和顺序前进搜索法来进行特征选择,并使用支持向量机进行分类识别.算法可有效降低人工阅片的工作强度,辅助医生识别ABUS扫描区域内有无轻量型补片,并对补片相关诊断项目做出辅助评估. 展开更多
关键词 自动化三维乳腺超声(abus) 轻量型切口疝补片 筋膜 检测与评估算法
原文传递
常规手持式超声联合三维自动化乳腺超声在乳腺病灶良恶性病变诊断中的应用价值 被引量:2
3
作者 李新彦 张会珍 《中国医学装备》 2018年第8期59-62,共4页
目的:对常规超声联合三维自动化乳腺超声(ABUS)在乳腺病灶良恶性病变诊断中的作用进行探讨。方法:对医院收治的120例乳腺占位患者(150个病灶)临床资料进行回顾性分析,所有患者均先进行常规手持式超声(HHUS)检查,再联合ABUS进行检查。比... 目的:对常规超声联合三维自动化乳腺超声(ABUS)在乳腺病灶良恶性病变诊断中的作用进行探讨。方法:对医院收治的120例乳腺占位患者(150个病灶)临床资料进行回顾性分析,所有患者均先进行常规手持式超声(HHUS)检查,再联合ABUS进行检查。比较HHUS与HHUS+ABUS发现的病灶数目和大小,将病理结果作为金标准,比较两种诊断方法的灵敏度、特异度和准确率,利用受试者工作特征(ROC)曲线分析两种诊断方法的诊断价值。结果:120例患者中,HHUS检查发现127个病灶,病灶前后径(10.34±1.36)mm,左右径(15.83±1.73)mm,上下径(5.48±0.86)mm;灵敏度为82.54%,特异度为85.96%,准确率为87.5%,ROC曲线下面积(AUC)值为0.899。HHUS+ABUS检查发现148个病灶,病灶前后径(10.51±1.38)mm,左右径(15.92±1.71)mm,上下径(5.44±0.87)mm;灵敏度为93.55%,特异度为96.55%,准确率为95.83%,ROC曲线下面积为0.927,差异有统计学意义(t=2.743,4.673,4.891,3.188,P<0.05)。结论:常规超声检查与三维自动化乳腺超声联合应用于乳腺病灶良恶性的诊断中,具有更好的诊断价值,临床上对乳腺病灶的诊断可推广应用HHUS+ABUS的诊断模式。 展开更多
关键词 手持式超声 三维自动化乳腺超声 乳腺病灶 良恶性诊断
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部