期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于主题感知和语义增强的作文自动评分方法
1
作者 陈宇航 杨勇 +4 位作者 先木斯亚·买买提明 帕力旦·吐尔逊 樊小超 任鸽 刁宇峰 《计算机工程》 CAS CSCD 北大核心 2024年第8期363-371,共9页
作文自动评分(AES)是教育领域中应用自然语言处理(NLP)技术的重要研究方向之一,其旨在提高评分效率,增强评价的客观性和可靠性。针对主题相关性缺失和长文本信息丢失问题以及预训练语言模型BERT不同层次能够提取不同维度特征的特点,提... 作文自动评分(AES)是教育领域中应用自然语言处理(NLP)技术的重要研究方向之一,其旨在提高评分效率,增强评价的客观性和可靠性。针对主题相关性缺失和长文本信息丢失问题以及预训练语言模型BERT不同层次能够提取不同维度特征的特点,提出一种基于主题感知和语义增强的作文自动评分模型。该模型采用多头注意力机制提取作文的浅层语义特征并感知作文主题特征,同时利用BERT的中间层句法特征和深层语义特征增强对作文语义的理解。在此基础上,融合不同维度的特征并用于作文自动评分。实验结果表明,该模型在公共数据集ASAP的8个子集上均表现出了显著的性能优势,相比于通义千问等基线模型,其能够有效提升作文自动评分性能,平均二次加权的卡帕值(QWK)达到80.25%。 展开更多
关键词 作文自动评分 语义增强 主题感知 特征融合 预训练语言模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部