期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Convolutional neural network-based automatic image recognition for agricultural machinery 被引量:2
1
作者 Kun Yang Hui Liu +2 位作者 Pei Wang Zhijun Meng Jingping Chen 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2018年第4期200-206,共7页
An internet of things-based subsoiling operation monitoring system for agricultural machinery is able to identify the type and operating state of a certain machinery by collecting and recognizing its images;however,it... An internet of things-based subsoiling operation monitoring system for agricultural machinery is able to identify the type and operating state of a certain machinery by collecting and recognizing its images;however,it does not meet regulatory requirements due to a large image data volume,heavy workload by artificial selective examination,and low efficiency.In this study,a dataset containing machinery images of over 100 machines was established,which including subsoilers,rotary cultivators,reversible plows,subsoiling and soil-preparation machines,seeders,and non-machinery images.The images were annotated in tensorflow,a deep learning platform from Google.Then,a convolutional neural network(CNN)was designed for targeting actual regulatory demands and image characteristics,which was optimized by reducing overfitting and improving training efficiency.Model training results showed that the recognition rate of this machinery recognition network to the demonstration dataset reached 98.5%.In comparison,the recognition rates of LeNet and AlexNet under the same conditions were 81%and 98.8%,respectively.In terms of model recognition efficiency,it took AlexNet 60 h to complete training and 0.3 s to recognize 1 image,whereas the proposed machinery recognition network took only half that time to complete training and 0.1 s to recognize 1 image.To further verify the practicability of this model,6 types of images,with 200 images in each type,were randomly selected and used for testing;results indicated that the average recognition recall rate of various types of machinery images was 98.8%.In addition,the model was robust to illumination,environmental changes,and small-area occlusion,and thus was competent for intelligent image recognition of subsoiling operation monitoring systems. 展开更多
关键词 agricultural machinery monitoring system automatic image recognition convolutional neural network
原文传递
Automatic target recognition method for inverse synthetic aperture sonar imaging 被引量:2
2
作者 ZHU Zhaotong PENG Shibao +1 位作者 XU Jia XU Xiaomei 《Chinese Journal of Acoustics》 CSCD 2018年第4期463-476,共14页
To address the randomness of target aspect angle and the incompleteness of observed target in inverse synthetic aperture sonar(ISAS) imaging,a method for target recognition is proposed based on topology vector feat... To address the randomness of target aspect angle and the incompleteness of observed target in inverse synthetic aperture sonar(ISAS) imaging,a method for target recognition is proposed based on topology vector feature(TVF) of multiple highlights. Analysis of the projection relationship from 3 D space to 2 D imaging plane in ISAS indicates that the distance between two highlights in the cross-range scale calibrated image is determined by the distance between the corresponding physical scattering centers. Then, TVFs of different targets, which remain stable in various possibilities of target aspect angle, can be built. K-means clustering technique is used to effectively alleviate effect of the point missing due to incompleteness of the observed target. A nearest neighbor classifier is used to realize the target recognition. The ISAS experimental results using underwater scaled models are provided to demonstrate the effectiveness of the proposed method. A classification rate of 84.0% is reached. 展开更多
关键词 automatic target recognition method for inverse synthetic aperture sonar imaging
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部