期刊文献+
共找到295篇文章
< 1 2 15 >
每页显示 20 50 100
Automatic Speaker Recognition Using Mel-Frequency Cepstral Coefficients Through Machine Learning 被引量:1
1
作者 U˘gur Ayvaz Hüseyin Gürüler +3 位作者 Faheem Khan Naveed Ahmed Taegkeun Whangbo Abdusalomov Akmalbek Bobomirzaevich 《Computers, Materials & Continua》 SCIE EI 2022年第6期5511-5521,共11页
Automatic speaker recognition(ASR)systems are the field of Human-machine interaction and scientists have been using feature extraction and feature matching methods to analyze and synthesize these signals.One of the mo... Automatic speaker recognition(ASR)systems are the field of Human-machine interaction and scientists have been using feature extraction and feature matching methods to analyze and synthesize these signals.One of the most commonly used methods for feature extraction is Mel Frequency Cepstral Coefficients(MFCCs).Recent researches show that MFCCs are successful in processing the voice signal with high accuracies.MFCCs represents a sequence of voice signal-specific features.This experimental analysis is proposed to distinguish Turkish speakers by extracting the MFCCs from the speech recordings.Since the human perception of sound is not linear,after the filterbank step in theMFCC method,we converted the obtained log filterbanks into decibel(dB)features-based spectrograms without applying the Discrete Cosine Transform(DCT).A new dataset was created with converted spectrogram into a 2-D array.Several learning algorithms were implementedwith a 10-fold cross-validationmethod to detect the speaker.The highest accuracy of 90.2%was achieved using Multi-layer Perceptron(MLP)with tanh activation function.The most important output of this study is the inclusion of human voice as a new feature set. 展开更多
关键词 automatic speaker recognition human voice recognition spatial pattern recognition MFCCs SPECTROGRAM machine learning artificial intelligence
下载PDF
An intelligent automatic correlation method of oilbearing strata based on pattern constraints:An example of accretionary stratigraphy of Shishen 100 block in Shinan Oilfield of Bohai Bay Basin,East China
2
作者 WU Degang WU Shenghe +1 位作者 LIU Lei SUN Yide 《Petroleum Exploration and Development》 SCIE 2024年第1期180-192,共13页
Aiming at the problem that the data-driven automatic correlation methods which are difficult to adapt to the automatic correlation of oil-bearing strata with large changes in lateral sedimentary facies and strata thic... Aiming at the problem that the data-driven automatic correlation methods which are difficult to adapt to the automatic correlation of oil-bearing strata with large changes in lateral sedimentary facies and strata thickness,an intelligent automatic correlation method of oil-bearing strata based on pattern constraints is formed.We propose to introduce knowledge-driven in automatic correlation of oil-bearing strata,constraining the correlation process by stratigraphic sedimentary patterns and improving the similarity measuring machine and conditional constraint dynamic time warping algorithm to automate the correlation of marker layers and the interfaces of each stratum.The application in Shishen 100 block in the Shinan Oilfield of the Bohai Bay Basin shows that the coincidence rate of the marker layers identified by this method is over 95.00%,and the average coincidence rate of identified oil-bearing strata reaches 90.02% compared to artificial correlation results,which is about 17 percentage points higher than that of the existing automatic correlation methods.The accuracy of the automatic correlation of oil-bearing strata has been effectively improved. 展开更多
关键词 oil-bearing strata automatic correlation contrastive learning stratigraphic sedimentary pattern marker layer similarity measuring machine conditional constraint dynamic time warping algorithm
下载PDF
Automatic Sentiment Classification of News Using Machine Learning Methods
3
作者 Yuhan Wang 《Modern Electronic Technology》 2022年第1期7-11,共5页
With the rapid development of social economy,the society has entered into a new stage of development,especially in new media under the background of rapid development,makes the importance of news and information to ge... With the rapid development of social economy,the society has entered into a new stage of development,especially in new media under the background of rapid development,makes the importance of news and information to get the comprehensive promotion,and in order to further identify the positive and negative news,should be fully using machine learning methods,based on the emotion to realize the automatic classifying of news,in order to improve the efficiency of news classification.Therefore,the article first makes clear the basic outline of news sentiment classification.Secondly,the specific way of automatic classification of news emotion is deeply analyzed.On the basis of this,the paper puts forward the concrete measures of automatic classification of news emotion by using machine learning. 展开更多
关键词 machine learning automatic classification of news sentiment Specific measures
下载PDF
AutoML: A systematic review on automated machine learning with neural architecture search 被引量:2
4
作者 Imrus Salehin Md.Shamiul Islam +4 位作者 Pritom Saha S.M.Noman Azra Tuni Md.Mehedi Hasan Md.Abu Baten 《Journal of Information and Intelligence》 2024年第1期52-81,共30页
AutoML(Automated Machine Learning)is an emerging field that aims to automate the process of building machine learning models.AutoML emerged to increase productivity and efficiency by automating as much as possible the... AutoML(Automated Machine Learning)is an emerging field that aims to automate the process of building machine learning models.AutoML emerged to increase productivity and efficiency by automating as much as possible the inefficient work that occurs while repeating this process whenever machine learning is applied.In particular,research has been conducted for a long time on technologies that can effectively develop high-quality models by minimizing the intervention of model developers in the process from data preprocessing to algorithm selection and tuning.In this semantic review research,we summarize the data processing requirements for AutoML approaches and provide a detailed explanation.We place greater emphasis on neural architecture search(NAS)as it currently represents a highly popular sub-topic within the field of AutoML.NAS methods use machine learning algorithms to search through a large space of possible architectures and find the one that performs best on a given task.We provide a summary of the performance achieved by representative NAS algorithms on the CIFAR-10,CIFAR-100,ImageNet and wellknown benchmark datasets.Additionally,we delve into several noteworthy research directions in NAS methods including one/two-stage NAS,one-shot NAS and joint hyperparameter with architecture optimization.We discussed how the search space size and complexity in NAS can vary depending on the specific problem being addressed.To conclude,we examine several open problems(SOTA problems)within current AutoML methods that assure further investigation in future research. 展开更多
关键词 automl Neural architecture search Advance machine learning Search space Hyperparameter optimization
原文传递
Applications of advanced signal processing and machine learning in the neonatal hypoxic-ischemic electroencephalography 被引量:4
5
作者 Hamid Abbasi Charles P.Unsworth 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第2期222-231,共10页
Perinatal hypoxic-ischemic-encephalopathy significantly contributes to neonatal death and life-long disability such as cerebral palsy. Advances in signal processing and machine learning have provided the research comm... Perinatal hypoxic-ischemic-encephalopathy significantly contributes to neonatal death and life-long disability such as cerebral palsy. Advances in signal processing and machine learning have provided the research community with an opportunity to develop automated real-time identification techniques to detect the signs of hypoxic-ischemic-encephalopathy in larger electroencephalography/amplitude-integrated electroencephalography data sets more easily. This review details the recent achievements, performed by a number of prominent research groups across the world, in the automatic identification and classification of hypoxic-ischemic epileptiform neonatal seizures using advanced signal processing and machine learning techniques. This review also addresses the clinical challenges that current automated techniques face in order to be fully utilized by clinicians, and highlights the importance of upgrading the current clinical bedside sampling frequencies to higher sampling rates in order to provide better hypoxic-ischemic biomarker detection frameworks. Additionally, the article highlights that current clinical automated epileptiform detection strategies for human neonates have been only concerned with seizure detection after the therapeutic latent phase of injury. Whereas recent animal studies have demonstrated that the latent phase of opportunity is critically important for early diagnosis of hypoxic-ischemic-encephalopathy electroencephalography biomarkers and although difficult, detection strategies could utilize biomarkers in the latent phase to also predict the onset of future seizures. 展开更多
关键词 advanced signal processing AEEG automatic detection classification clinical EEG fetal HIE hypoxic-ischemic ENCEPHALOPATHY machine learning neonatal SEIZURE real-time identification review
下载PDF
Auto machine learning-based modelling and prediction of excavationinduced tunnel displacement 被引量:3
6
作者 Dongmei Zhang Yiming Shen +1 位作者 Zhongkai Huang Xiaochuang Xie 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第4期1100-1114,共15页
The influence of a deep excavation on existing shield tunnels nearby is a vital issue in tunnelling engineering.Whereas,there lacks robust methods to predict excavation-induced tunnel displacements.In this study,an au... The influence of a deep excavation on existing shield tunnels nearby is a vital issue in tunnelling engineering.Whereas,there lacks robust methods to predict excavation-induced tunnel displacements.In this study,an auto machine learning(AutoML)-based approach is proposed to precisely solve the issue.Seven input parameters are considered in the database covering two physical aspects,namely soil property,and spatial characteristics of the deep excavation.The 10-fold cross-validation method is employed to overcome the scarcity of data,and promote model’s robustness.Six genetic algorithm(GA)-ML models are established as well for comparison.The results indicated that the proposed AutoML model is a comprehensive model that integrates efficiency and robustness.Importance analysis reveals that the ratio of the average shear strength to the vertical effective stress E_(ur)/σ′_(v),the excavation depth H,and the excavation width B are the most influential variables for the displacements.Finally,the AutoML model is further validated by practical engineering.The prediction results are in a good agreement with monitoring data,signifying that our model can be applied in real projects. 展开更多
关键词 Soilestructure interaction Auto machine learning(automl) Displacement prediction Robust model Geotechnical engineering
下载PDF
Machine Learning of Weather Forecasting Rules from Large Meteorological Data Bases 被引量:1
7
作者 Honghua DaiDepartment of Computer Science,Monash University,Australia,dai@ brucc.cs.monash.edu.au 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1996年第4期471-488,共18页
Discovery of useful forecasting rules from observational weather data is an outstanding interesting topic.The traditional methods of acquiring forecasting knowledge are manual analysis and investigation performed by h... Discovery of useful forecasting rules from observational weather data is an outstanding interesting topic.The traditional methods of acquiring forecasting knowledge are manual analysis and investigation performed by human scientists.This paper presents the experimental results of an automatic machine learning system which derives forecasting rules from real observational data.We tested the system on the two large real data sets from the areas of centra! China and Victoria of Australia.The experimental results show that the forecasting rules discovered by the system are very competitive to human experts.The forecasting accuracy rates are 86.4% and 78% of the two data sets respectively 展开更多
关键词 Weather forecasting machine learning machine discovery Meteorological expert system Meteorological knowledge processing automatic forecasting
下载PDF
Semi-supervised learning based probabilistic latent semantic analysis for automatic image annotation 被引量:1
8
作者 Tian Dongping 《High Technology Letters》 EI CAS 2017年第4期367-374,共8页
In recent years,multimedia annotation problem has been attracting significant research attention in multimedia and computer vision areas,especially for automatic image annotation,whose purpose is to provide an efficie... In recent years,multimedia annotation problem has been attracting significant research attention in multimedia and computer vision areas,especially for automatic image annotation,whose purpose is to provide an efficient and effective searching environment for users to query their images more easily. In this paper,a semi-supervised learning based probabilistic latent semantic analysis( PLSA) model for automatic image annotation is presenred. Since it's often hard to obtain or create labeled images in large quantities while unlabeled ones are easier to collect,a transductive support vector machine( TSVM) is exploited to enhance the quality of the training image data. Then,different image features with different magnitudes will result in different performance for automatic image annotation. To this end,a Gaussian normalization method is utilized to normalize different features extracted from effective image regions segmented by the normalized cuts algorithm so as to reserve the intrinsic content of images as complete as possible. Finally,a PLSA model with asymmetric modalities is constructed based on the expectation maximization( EM) algorithm to predict a candidate set of annotations with confidence scores. Extensive experiments on the general-purpose Corel5k dataset demonstrate that the proposed model can significantly improve performance of traditional PLSA for the task of automatic image annotation. 展开更多
关键词 automatic image annotation semi-supervised learning probabilistic latent semantic analysis(PLSA) transductive support vector machine(TSVM) image segmentation image retrieval
下载PDF
基于Azure AutoML的泥沙预报模型构建与应用 被引量:1
9
作者 曹辉 陈柯兵 董炳江 《人民长江》 北大核心 2023年第4期94-100,共7页
泥沙预报是开展水库泥沙实时调度的前提,而水沙作用机理和演进规律的复杂性又导致开展高效、精准的泥沙预报较为困难。基于微软在2018年发布的Azure AutoML自动化机器学习技术,进行了泥沙预报模型构建与应用的探索。选取三峡水库泥沙重... 泥沙预报是开展水库泥沙实时调度的前提,而水沙作用机理和演进规律的复杂性又导致开展高效、精准的泥沙预报较为困难。基于微软在2018年发布的Azure AutoML自动化机器学习技术,进行了泥沙预报模型构建与应用的探索。选取三峡水库泥沙重要控制站——寸滩、清溪场、万县、黄陵庙站构建了含沙量预报模型,并从模型构建与评估、预报精度、输入因子重要性等角度开展了分析。研究结果表明:Azure AutoML技术可便捷地进行自动化机器学习模型的构建,基于该技术建立的预见期为1~3 d的模型针对沙峰消退阶段和含沙量较小阶段预报效果较好;预见期为1~2 d的模型可以对沙峰开展较为准确的预报;寸滩、清溪场站含沙量主要受到上游来沙的影响,而万县、黄陵庙站的含沙量自相关性较强。 展开更多
关键词 泥沙预报 沙峰传播 含沙量 Azure automl 自动化机器学习 三峡水库
下载PDF
Design of Machine Learning Based Smart Irrigation System for Precision Agriculture
10
作者 Khalil Ibrahim Mohammad Abuzanouneh Fahd N.Al-Wesabi +6 位作者 Amani Abdulrahman Albraikan Mesfer Al Duhayyim M.Al-Shabi Anwer Mustafa Hilal Manar Ahmed Hamza Abu Sarwar Zamani K.Muthulakshmi 《Computers, Materials & Continua》 SCIE EI 2022年第7期109-124,共16页
Agriculture 4.0,as the future of farming technology,comprises numerous key enabling technologies towards sustainable agriculture.The use of state-of-the-art technologies,such as the Internet of Things,transform tradit... Agriculture 4.0,as the future of farming technology,comprises numerous key enabling technologies towards sustainable agriculture.The use of state-of-the-art technologies,such as the Internet of Things,transform traditional cultivation practices,like irrigation,to modern solutions of precision agriculture.To achieve effectivewater resource usage and automated irrigation in precision agriculture,recent technologies like machine learning(ML)can be employed.With this motivation,this paper design an IoT andML enabled smart irrigation system(IoTML-SIS)for precision agriculture.The proposed IoTML-SIS technique allows to sense the parameters of the farmland and make appropriate decisions for irrigation.The proposed IoTML-SIS model involves different IoT based sensors for soil moisture,humidity,temperature sensor,and light.Besides,the sensed data are transmitted to the cloud server for processing and decision making.Moreover,artificial algae algorithm(AAA)with least squares-support vector machine(LS-SVM)model is employed for the classification process to determine the need for irrigation.Furthermore,the AAA is applied to optimally tune the parameters involved in the LS-SVM model,and thereby the classification efficiency is significantly increased.The performance validation of the proposed IoTML-SIS technique ensured better performance over the compared methods with the maximum accuracy of 0.975. 展开更多
关键词 automatic irrigation precision agriculture smart farming machine learning cloud computing decision making internet of things
下载PDF
Robust signal recognition algorithm based on machine learning in heterogeneous networks
11
作者 Xiaokai Liu Rong Li +1 位作者 Chenglin Zhao Pengbiao Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第2期333-342,共10页
There are various heterogeneous networks for terminals to deliver a better quality of service. Signal system recognition and classification contribute a lot to the process. However, in low signal to noise ratio(SNR)... There are various heterogeneous networks for terminals to deliver a better quality of service. Signal system recognition and classification contribute a lot to the process. However, in low signal to noise ratio(SNR) circumstances or under time-varying multipath channels, the majority of the existing algorithms for signal recognition are already facing limitations. In this series, we present a robust signal recognition method based upon the original and latest updated version of the extreme learning machine(ELM) to help users to switch between networks. The ELM utilizes signal characteristics to distinguish systems. The superiority of this algorithm lies in the random choices of hidden nodes and in the fact that it determines the output weights analytically, which result in lower complexity. Theoretically, the algorithm tends to offer a good generalization performance at an extremely fast speed of learning. Moreover, we implement the GSM/WCDMA/LTE models in the Matlab environment by using the Simulink tools. The simulations reveal that the signals can be recognized successfully to achieve a 95% accuracy in a low SNR(0 dB) environment in the time-varying multipath Rayleigh fading channel. 展开更多
关键词 heterogeneous networks automatic signal classification extreme learning machine(ELM) features-extracted Rayleigh fading channel
下载PDF
基于人工智能AutoML技术的短波发射机故障预测分析 被引量:2
12
作者 蔡国保 《电声技术》 2023年第5期109-111,共3页
人工智能(Artificial Intelligence,AI)技术是由深度学习算法衍生出的技术,该技术主要用于特征提取和结果预测。自动机器学习(Auto Machine Learning,AutoML)作为人工智能技术的代表,现已在神经架构搜索(Neural Architecture Search,NAS... 人工智能(Artificial Intelligence,AI)技术是由深度学习算法衍生出的技术,该技术主要用于特征提取和结果预测。自动机器学习(Auto Machine Learning,AutoML)作为人工智能技术的代表,现已在神经架构搜索(Neural Architecture Search,NAS)、元学习等领域得到广泛应用。以短波发射机为研究对象,介绍预测设备故障所使用AutoML的框架和应用方向,说明基于该技术设计预测系统的一般步骤,并围绕该技术的具体应用展开讨论,以供参考。 展开更多
关键词 短波发射机 人工智能(AI) 自动机器学习(automl) 故障预测
下载PDF
An AutoML based trajectory optimization method for long-distance spacecraft pursuit-evasion game
13
作者 YANG Fuyunxiang YANG Leping ZHU Yanwei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第3期754-765,共12页
Current successes in artificial intelligence domain have revitalized interest in spacecraft pursuit-evasion game,which is an interception problem with a non-cooperative maneuvering target.The paper presents an automat... Current successes in artificial intelligence domain have revitalized interest in spacecraft pursuit-evasion game,which is an interception problem with a non-cooperative maneuvering target.The paper presents an automated machine learning(AutoML)based method to generate optimal trajectories in long-distance scenarios.Compared with conventional deep neural network(DNN)methods,the proposed method dramatically reduces the reliance on manual intervention and machine learning expertise.Firstly,based on differential game theory and costate normalization technique,the trajectory optimization problem is formulated under the assumption of continuous thrust.Secondly,the AutoML technique based on sequential model-based optimization(SMBO)framework is introduced to automate DNN design in deep learning process.If recommended DNN architecture exists,the tree-structured Parzen estimator(TPE)is used,otherwise the efficient neural architecture search(NAS)with network morphism is used.Thus,a novel trajectory optimization method with high computational efficiency is achieved.Finally,numerical results demonstrate the feasibility and efficiency of the proposed method. 展开更多
关键词 PURSUIT-EVASION different game trajectory optimization automated machine learning(automl)
下载PDF
A Robust Model for Translating Arabic Sign Language into Spoken Arabic Using Deep Learning
14
作者 Khalid M.O.Nahar Ammar Almomani +1 位作者 Nahlah Shatnawi Mohammad Alauthman 《Intelligent Automation & Soft Computing》 SCIE 2023年第8期2037-2057,共21页
This study presents a novel and innovative approach to auto-matically translating Arabic Sign Language(ATSL)into spoken Arabic.The proposed solution utilizes a deep learning-based classification approach and the trans... This study presents a novel and innovative approach to auto-matically translating Arabic Sign Language(ATSL)into spoken Arabic.The proposed solution utilizes a deep learning-based classification approach and the transfer learning technique to retrain 12 image recognition models.The image-based translation method maps sign language gestures to corre-sponding letters or words using distance measures and classification as a machine learning technique.The results show that the proposed model is more accurate and faster than traditional image-based models in classifying Arabic-language signs,with a translation accuracy of 93.7%.This research makes a significant contribution to the field of ATSL.It offers a practical solution for improving communication for individuals with special needs,such as the deaf and mute community.This work demonstrates the potential of deep learning techniques in translating sign language into natural language and highlights the importance of ATSL in facilitating communication for individuals with disabilities. 展开更多
关键词 Sign language deep learning transfer learning machine learning automatic translation of sign language natural language processing Arabic sign language
下载PDF
建筑基本周期多因素机器学习预测模型 被引量:3
15
作者 陈隽 宋颖豪 王泽涛 《工程力学》 EI CSCD 北大核心 2024年第2期171-179,共9页
建筑物基本周期是其最重要的动力特性参数,影响因素众多。受限于曲线拟合的传统建模手段,目前的基本周期预测模型表达式中仅能包含高度或层数等单一因素,而忽略其他因素的影响。数据驱动机器学习方法的出现,为建筑周期多因素预测模型的... 建筑物基本周期是其最重要的动力特性参数,影响因素众多。受限于曲线拟合的传统建模手段,目前的基本周期预测模型表达式中仅能包含高度或层数等单一因素,而忽略其他因素的影响。数据驱动机器学习方法的出现,为建筑周期多因素预测模型的建立提供了新思路。研究从大量文献中收集整理了2561条建筑周期的实测数据,形成了包含建筑高度、层数、材料、功能、地区等多因素的建筑周期实测数据库。建立了具有自学习能力的建筑基本周期多因素机器学习预测模型,避免了一般机器学习模型中繁琐的参数调节过程,提升模型的鲁棒性和适用性。与传统模型结果的对比表明:所提预测模型的适用结构类型范围广、准确性更高,配合云端服务器可形成一种全新的、开放式自学习的建筑周期预测模式。 展开更多
关键词 基本周期 实测数据 多因素 机器学习 automl
下载PDF
基于机器深度学习的小麦播种机控制系统研究 被引量:2
16
作者 单绍隆 康华 《农机化研究》 北大核心 2024年第7期208-211,共4页
针对我国小麦播种机自动控制系统的可靠性及灵敏度不高的问题,基于机器深度学习对小麦播种机的控制系统进行了设计和改进。小麦播种机的主要组成包括控制系统、排种系统、监控系统、电力系统、机架和驾驶室、覆土镇压和排肥装置。为了... 针对我国小麦播种机自动控制系统的可靠性及灵敏度不高的问题,基于机器深度学习对小麦播种机的控制系统进行了设计和改进。小麦播种机的主要组成包括控制系统、排种系统、监控系统、电力系统、机架和驾驶室、覆土镇压和排肥装置。为了使播种机的控制系统能有效进行图像检测识别,提升播种机的控制精度,采用机器深度学习中的卷积神经网络算法对控制系统进行设计,并采用迁移学习的方式对模型进行训练和检测。为了验证播种机控制系统的性能,对其进行播种精度控制和播种性能测试试验,结果表明:播种机的精度和性能均符合播种机的设计要求。 展开更多
关键词 小麦播种机 自动控制系统 机器深度学习 卷积神经网络算法 迁移学习
下载PDF
深度学习在活动构造与地貌研究中的应用
17
作者 刘鑫 王诗柔 +7 位作者 石许华 苏程 鲁晨妍 钱晓园 孙侨阳 邓洪旦 杨蓉 程晓敢 《地震地质》 EI CSCD 北大核心 2024年第2期277-296,共20页
活动构造与地貌学主要涉及活动构造的运动学、地貌的演化过程及其相关动力机制,该研究方向是近几十年来地球系统科学交叉研究的热点之一。随着大数据与机器学习研究的发展,活动构造与地貌学的研究和深度学习的结合已成为该领域中受到广... 活动构造与地貌学主要涉及活动构造的运动学、地貌的演化过程及其相关动力机制,该研究方向是近几十年来地球系统科学交叉研究的热点之一。随着大数据与机器学习研究的发展,活动构造与地貌学的研究和深度学习的结合已成为该领域中受到广泛关注的新兴研究方向,并产出了大量优秀成果。文中总结并综述了现今深度学习在活动构造与地貌研究中的数据来源,以及利用深度学习的方法定量化解决活动构造与地貌中的重要科学问题(包括冰川识别、火山活动与地貌、水系分析、滑坡监测和地表形变等)。基于对上述实例的探索,文中运用深度学习中的卷积神经网络,对华南东南部福建地区的花岗岩岩石构造裂缝开展了基于高精度无人机航拍影像的深度学习自动识别。所搭建的卷积网络模型在55min的运行时间内自动识别出人工需消耗近一周才可识别的9000余条裂缝,并获得了85%的查准率与89%的查全率,表明该模型在准确识别构造裂缝的同时显著提升了工作效率。文中最后讨论并展望了未来深度学习方法在活动构造与地貌学领域的发展前景。 展开更多
关键词 机器学习 深度学习 活动构造 地貌 自动识别
下载PDF
基于数据驱动的配电网无功优化
18
作者 蔡昌春 程增茂 +2 位作者 张关应 李源佳 储云迪 《电网技术》 EI CSCD 北大核心 2024年第1期373-382,共10页
传统无功电压控制由于分布式电源、储能以及柔性负荷的接入面临计算速度和精度上的挑战。该文提出了一种基于数据驱动的配电网无功电压优化方法,通过跟踪实际系统的运行参数,实现无功电压的主动控制。在极限学习机中引入自动编码器构建... 传统无功电压控制由于分布式电源、储能以及柔性负荷的接入面临计算速度和精度上的挑战。该文提出了一种基于数据驱动的配电网无功电压优化方法,通过跟踪实际系统的运行参数,实现无功电压的主动控制。在极限学习机中引入自动编码器构建深度学习机制,利用自动编码器建立极限学习机输入-输出的直接耦合关系,实现无监督学习和有监督学习有机结合,缩短训练模型的迭代过程;利用蒙特卡洛法基于分布式电源、负荷预测信息构建配电网运行场景,利用深度极限学习机挖掘运行场景优化运行与无功调压设备状态间的内在联系,建立电网运行场景与系统无功调压策略的映射关系。该文提出的基于数据驱动的无功优化方法不依赖实际系统潮流计算,能够实现配电网运行状态的跟踪和无功调节设备的优化调度,为配电网无功电压的主动控制打下基础。 展开更多
关键词 数据驱动 无功优化 深度极限学习机 自动编码器 主动控制
下载PDF
基于机器学习与眼动追踪的认知风格模型构建
19
作者 薛耀锋 朱芳清 《现代远程教育研究》 北大核心 2024年第4期94-103,共10页
认知风格反映了学生接近、获取、组织、处理和解释信息的模式,可用来解释和指导学生的行为。将认知风格集成到智能系统中,有助于开发个性化的用户模型,推动智能教育发展。当前有关认知风格自动分类的研究较为匮乏,尚未将机器学习与眼动... 认知风格反映了学生接近、获取、组织、处理和解释信息的模式,可用来解释和指导学生的行为。将认知风格集成到智能系统中,有助于开发个性化的用户模型,推动智能教育发展。当前有关认知风格自动分类的研究较为匮乏,尚未将机器学习与眼动追踪技术联合起来进行应用。基于机器学习与眼动追踪的认知风格模型,选取注视时长、注视点数量、扫视时长、眼跳次数、眼跳距离与瞳孔直径等6个与认知有着密切关系的眼动指标,归一化处理后借助机器学习算法进行认知风格自动分类。实验结果表明:在进行同样时长的视频学习时,不同场认知风格的学习者表现出不同的视觉行为模式;场依存型学习者注视点较为分散,表现出有较多的扫视行为、较少的注视行为、较长的眼跳距离与较大的瞳孔直径变化,信息搜索效率较低;而场独立型学习者有着较为密集与定向的视觉注意模式,信息搜索效率更高。对5种机器学习算法进行性能对比后发现,逻辑回归算法的分类效果最好,准确率达到89.01%,Kappa值达到0.774。该认知风格自动化分类模型既可用于智能学习系统的课程资源优化设计,也可用于个性化学习路径的推荐。未来可整合更多生理数据,通过不同模态数据之间的信息互补,提升数据分析的准确性以及对学习者认知能力评估的可靠性。 展开更多
关键词 智能教育 机器学习 眼动追踪技术 场认知风格 自动化分类
下载PDF
计算机图像智能识别下的割草机器人设计研究
20
作者 袁社锋 《农机化研究》 北大核心 2024年第11期136-139,共4页
为了提升割草机器人的工作效率、安全及自主性,基于堆叠降噪自动编码机设计了智能图像识别算法,用于实现割草机器人进行作业时自动化识别环境,以进一步提高工作效率。将割草机器人视觉传感器所采集的草地图像作为输入信号,通过叠加多层... 为了提升割草机器人的工作效率、安全及自主性,基于堆叠降噪自动编码机设计了智能图像识别算法,用于实现割草机器人进行作业时自动化识别环境,以进一步提高工作效率。将割草机器人视觉传感器所采集的草地图像作为输入信号,通过叠加多层自动降噪编码机组成深度神经网络,可以深入挖掘草地图像所携带的信息,识别并提取图像特征。通过训练所建立网络,获得稳定输出,提高了割草机器人识别目标准确率。试验结果表明:本算法可进一步提高割草机器人识别准确率,从而提高工作效率。 展开更多
关键词 图像识别 机器学习 特征提取 降噪自动编码机 割草机器人
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部