期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Experimental Study of Discriminative Adaptive Training and MLLR for Automatic Pronunciation Evaluation 被引量:3
1
作者 宋寅 梁维谦 《Tsinghua Science and Technology》 SCIE EI CAS 2011年第2期189-193,共5页
A stronger canonical model was developed to improve the performance of automatic pronunciation evaluations. Three different strategies were investigated with speaker adaptive training to normalize variations among spe... A stronger canonical model was developed to improve the performance of automatic pronunciation evaluations. Three different strategies were investigated with speaker adaptive training to normalize variations among speakers, minimum phone error training to identify easily confused phones and maximum likelihood linear regression (MLLR) adaptation to compensate for accent variations between native and non-native speakers. The three schemes were combined to improve the correlation coefficient between machine scores and human scores from 0.651 to 0.679 on the sentence level and from 0.788 to 0.822 on the speaker level. 展开更多
关键词 discriminative adaptive training (DAT) speaker adaptive training (SAT) minimum phone error(MPE) automatic pronunciation evaluation ape
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部