Automatic Chinese text summarization for dialogue style is a relatively new research area. In this paper, Latent Semantic Analysis (LSA) is first used to extract semantic knowledge from a given document, all questio...Automatic Chinese text summarization for dialogue style is a relatively new research area. In this paper, Latent Semantic Analysis (LSA) is first used to extract semantic knowledge from a given document, all question paragraphs are identified, an automatic text segmentation approach analogous to Text'filing is exploited to improve the precision of correlating question paragraphs and answer paragraphs, and finally some "important" sentences are extracted from the generic content and the question-answer pairs to generate a complete summary. Experimental results showed that our approach is highly efficient and improves significantly the coherence of the summary while not compromising informativeness.展开更多
Automatic text summarization(ATS)has achieved impressive performance thanks to recent advances in deep learning(DL)and the availability of large-scale corpora.The key points in ATS are to estimate the salience of info...Automatic text summarization(ATS)has achieved impressive performance thanks to recent advances in deep learning(DL)and the availability of large-scale corpora.The key points in ATS are to estimate the salience of information and to generate coherent results.Recently,a variety of DL-based approaches have been developed for better considering these two aspects.However,there is still a lack of comprehensive literature review for DL-based ATS approaches.The aim of this paper is to comprehensively review significant DL-based approaches that have been proposed in the literature with respect to the notion of generic ATS tasks and provide a walk-through of their evolution.We first give an overview of ATS and DL.The comparisons of the datasets are also given,which are commonly used for model training,validation,and evaluation.Then we summarize single-document summarization approaches.After that,an overview of multi-document summarization approaches is given.We further analyze the performance of the popular ATS models on common datasets.Various popular approaches can be employed for different ATS tasks.Finally,we propose potential research directions in this fast-growing field.We hope this exploration can provide new insights into future research of DL-based ATS.展开更多
基金Project (No. 2002AA119050) supported by the National Hi-TechResearch and Development Program (863) of China
文摘Automatic Chinese text summarization for dialogue style is a relatively new research area. In this paper, Latent Semantic Analysis (LSA) is first used to extract semantic knowledge from a given document, all question paragraphs are identified, an automatic text segmentation approach analogous to Text'filing is exploited to improve the precision of correlating question paragraphs and answer paragraphs, and finally some "important" sentences are extracted from the generic content and the question-answer pairs to generate a complete summary. Experimental results showed that our approach is highly efficient and improves significantly the coherence of the summary while not compromising informativeness.
基金supported by the National Key Research and Development Program of China under Grant No.2016YFB1000902the National Natural Science Foundation of China under Grant Nos.61232015,61472412,and 61621003.
文摘Automatic text summarization(ATS)has achieved impressive performance thanks to recent advances in deep learning(DL)and the availability of large-scale corpora.The key points in ATS are to estimate the salience of information and to generate coherent results.Recently,a variety of DL-based approaches have been developed for better considering these two aspects.However,there is still a lack of comprehensive literature review for DL-based ATS approaches.The aim of this paper is to comprehensively review significant DL-based approaches that have been proposed in the literature with respect to the notion of generic ATS tasks and provide a walk-through of their evolution.We first give an overview of ATS and DL.The comparisons of the datasets are also given,which are commonly used for model training,validation,and evaluation.Then we summarize single-document summarization approaches.After that,an overview of multi-document summarization approaches is given.We further analyze the performance of the popular ATS models on common datasets.Various popular approaches can be employed for different ATS tasks.Finally,we propose potential research directions in this fast-growing field.We hope this exploration can provide new insights into future research of DL-based ATS.