With the popularity of the automatic precipitation gauges in national weather stations,testing their performance and adjusting their measurements are top priorities. Additionally,because different climatic conditions ...With the popularity of the automatic precipitation gauges in national weather stations,testing their performance and adjusting their measurements are top priorities. Additionally,because different climatic conditions may have different effects on the performance of the precipitation gauges, it is also necessary to test the gauges in different areas. This study mainly analyzed precipitation measurements from the single-Altershielded TRwS204 automatic weighing gauge(TRwS_(SA)) relative to the adjusted manual measurements(reference precipitation) from the Chinese standard precipitation gauge in a doublefence wind shield(CSPG_(DF)) in the Hulu watershed in the Qilian Mountains, China. The measurements were compared over the period from August 2014 to July2017, and the transfer function derived from the work by Kochendorfer et al.(2017 a) for correcting windinduced losses was applied to the TRwS_(SA) measurements. The results show that the average loss of TRwS_(SA) measurements relative to the reference precipitation decreased from 0.55 mm(10.7%) to 0.51 mm(9.9%) for rainfall events, from 0.35 mm(8.5%)to 0.22 mm(5.3%) for sleet events, and from 0.49 mm(18.9%) to 0.33 mm(12.7%) for snowfall events after adjustment. The uncorrected large biases of TRwS_(SA) measurements are considered to be mainly caused by specific errors of TRwS_(SA), different gauge orifice area and random errors. These types of errors must be considered when comparing precipitation measurements for different gauge types, especially in the mountains.展开更多
Bodyweight is a key indicator of broiler production as it measures the production efficiency and indicates the health of a flock.Currently,broiler weight(i.e.,bodyweight)is primarily weighed manually,which is timecons...Bodyweight is a key indicator of broiler production as it measures the production efficiency and indicates the health of a flock.Currently,broiler weight(i.e.,bodyweight)is primarily weighed manually,which is timeconsuming and labor-intensive,and tends to create stress in birds.This study aimed to develop an automatic and stress-free weighing platform for monitoring the weight of floor-reared broiler chickens in commercial production.The developed system consists of a weighing platform,a real-time communication terminal,computer software and a smart phone applet userinterface.The system collected weight data of chickens on the weighing platform at intervals of 6 s,followed by filtering of outliers and repeating readings.The performance and stability of this system was systematically evaluated under commercial production conditions.With the adoption of data preprocessing protocol,the average error of the new automatic weighing system was only 10.3 g,with an average accuracy 99.5%with the standard deviation of 2.3%.Further regression analysis showed a strong agreement between estimated weight and the standard weight obtained by the established live-bird sales system.The variance(an indicator of flock uniformity)of broiler weight estimated using automatic weighing platforms was in accordance with the standard weight.The weighing system demonstrated superior stability for different growth stages,rearing seasons,growth rate types(medium-and slow-growing chickens)and sexes.The system is applicable for daily weight monitoring in floor-reared broiler houses to improve feeding management,growth monitoring and finishing day prediction.Its application in commercial farms would improve the sustainability of poultry industry.展开更多
基金supported primarily by the National Basic Research Program of China (2013CBA01806)the National Natural Sciences Foundation of China (41671029, 41690141, 41401040 and 41501040)
文摘With the popularity of the automatic precipitation gauges in national weather stations,testing their performance and adjusting their measurements are top priorities. Additionally,because different climatic conditions may have different effects on the performance of the precipitation gauges, it is also necessary to test the gauges in different areas. This study mainly analyzed precipitation measurements from the single-Altershielded TRwS204 automatic weighing gauge(TRwS_(SA)) relative to the adjusted manual measurements(reference precipitation) from the Chinese standard precipitation gauge in a doublefence wind shield(CSPG_(DF)) in the Hulu watershed in the Qilian Mountains, China. The measurements were compared over the period from August 2014 to July2017, and the transfer function derived from the work by Kochendorfer et al.(2017 a) for correcting windinduced losses was applied to the TRwS_(SA) measurements. The results show that the average loss of TRwS_(SA) measurements relative to the reference precipitation decreased from 0.55 mm(10.7%) to 0.51 mm(9.9%) for rainfall events, from 0.35 mm(8.5%)to 0.22 mm(5.3%) for sleet events, and from 0.49 mm(18.9%) to 0.33 mm(12.7%) for snowfall events after adjustment. The uncorrected large biases of TRwS_(SA) measurements are considered to be mainly caused by specific errors of TRwS_(SA), different gauge orifice area and random errors. These types of errors must be considered when comparing precipitation measurements for different gauge types, especially in the mountains.
基金funded by Zhejiang Provincial Key R&D Program(2021C02026)China Agriculture Research System(CARS-40).
文摘Bodyweight is a key indicator of broiler production as it measures the production efficiency and indicates the health of a flock.Currently,broiler weight(i.e.,bodyweight)is primarily weighed manually,which is timeconsuming and labor-intensive,and tends to create stress in birds.This study aimed to develop an automatic and stress-free weighing platform for monitoring the weight of floor-reared broiler chickens in commercial production.The developed system consists of a weighing platform,a real-time communication terminal,computer software and a smart phone applet userinterface.The system collected weight data of chickens on the weighing platform at intervals of 6 s,followed by filtering of outliers and repeating readings.The performance and stability of this system was systematically evaluated under commercial production conditions.With the adoption of data preprocessing protocol,the average error of the new automatic weighing system was only 10.3 g,with an average accuracy 99.5%with the standard deviation of 2.3%.Further regression analysis showed a strong agreement between estimated weight and the standard weight obtained by the established live-bird sales system.The variance(an indicator of flock uniformity)of broiler weight estimated using automatic weighing platforms was in accordance with the standard weight.The weighing system demonstrated superior stability for different growth stages,rearing seasons,growth rate types(medium-and slow-growing chickens)and sexes.The system is applicable for daily weight monitoring in floor-reared broiler houses to improve feeding management,growth monitoring and finishing day prediction.Its application in commercial farms would improve the sustainability of poultry industry.