In this paper, the authors make a summary of current situation of research on the Auto Anti-Collision, briefly introduce the components and functions of the NSACA Simulation Platform and bring forward the project to r...In this paper, the authors make a summary of current situation of research on the Auto Anti-Collision, briefly introduce the components and functions of the NSACA Simulation Platform and bring forward the project to realize the simulation of an Automatic Anti-Collision control, based on the NSACA Simulation Platform. Finally give typical examples from a great deal of simulating tests and analyze them.展开更多
The objective of the paper was to compare values of the muzzle brake efficiency coefficient for a rifle with active or inactive automatics systems.Special laboratory stand designed for investigating the recoil process...The objective of the paper was to compare values of the muzzle brake efficiency coefficient for a rifle with active or inactive automatics systems.Special laboratory stand designed for investigating the recoil process was used.The motion of the rifle was detected by the use of the laser interferometer and the optical camera.The recoil velocity time courses were determined by smoothing and differentiation of experimental position records.The results of the experiments indicated that in the case of an active automatics system two values of the recoil velocity can be used for calculation of the energetic efficiency coefficient:the maximum recoil velocity and the final recoil velocity at the end of the automatics action cycle.The values of the coefficient,calculated using these two values of the recoil velocity,distinctly differ.However,it was shown that their values indicate the same relation between the efficiency of various muzzle brakes.The value of the efficiency coefficient,determined on the basis of the final recoil velocity value,is practically the same as that determined on the basis of the final recoil velocity value for the rifle with an inactive automatics system.展开更多
Electrical Parking Brake(EPB) has been popularly used in passenger cars over the past ten years. With the help of the several kinds of sensors mounted in driveline for the total traction force estimation, EPB can obta...Electrical Parking Brake(EPB) has been popularly used in passenger cars over the past ten years. With the help of the several kinds of sensors mounted in driveline for the total traction force estimation, EPB can obtain well performance on drive-off assistance and automatic parking brake. Furthermore, its AUTOHOLD function can realize automatic parking brake and ease the driver. However, given that the higher cost and complexity of this traction force estimation method based on the driveline sensors and its slower response resulted by applying maximum parking force for safety parking while driving off, a novel automatic parking brake system without these transmission system sensors, such as clutch position sensor for the cars with manual transmission, is proposed in this paper, including its control scheme and application test. Firstly, the indirect judgement method of the appropriate moment to release the parking brake, which is based on the car pitch moment when it drives off, is introduced according to the force analysis when the car is ready to go. Then a pragmatic mass estimation method for proper brake force calculation is proposed for improving the drive-off performance. In addition, for the convenience and drivability of skillful driver, as well as the system reliability, a mechanical redundant design to reserve the conventional handbrake lever is also described. Finally, various simulations based on CarSim software and road tests are performed to validate its effectiveness.展开更多
文摘In this paper, the authors make a summary of current situation of research on the Auto Anti-Collision, briefly introduce the components and functions of the NSACA Simulation Platform and bring forward the project to realize the simulation of an Automatic Anti-Collision control, based on the NSACA Simulation Platform. Finally give typical examples from a great deal of simulating tests and analyze them.
基金supported by the National Research Centre[grant number DOBR/0046/R/ID1/2012/03]。
文摘The objective of the paper was to compare values of the muzzle brake efficiency coefficient for a rifle with active or inactive automatics systems.Special laboratory stand designed for investigating the recoil process was used.The motion of the rifle was detected by the use of the laser interferometer and the optical camera.The recoil velocity time courses were determined by smoothing and differentiation of experimental position records.The results of the experiments indicated that in the case of an active automatics system two values of the recoil velocity can be used for calculation of the energetic efficiency coefficient:the maximum recoil velocity and the final recoil velocity at the end of the automatics action cycle.The values of the coefficient,calculated using these two values of the recoil velocity,distinctly differ.However,it was shown that their values indicate the same relation between the efficiency of various muzzle brakes.The value of the efficiency coefficient,determined on the basis of the final recoil velocity value,is practically the same as that determined on the basis of the final recoil velocity value for the rifle with an inactive automatics system.
基金supported by the National Natural Science Foundation of China(Grant No.51875235)the 2018 "13th Five-Year" Scientific Research Planning Project of the Education Department of Jilin Province(Grant No.JJKH20180135KJ)the 2018 Jilin Province Science and Technology Development Plan-International Science and Technology Cooperation Project(Grant No.20180414011GH)
文摘Electrical Parking Brake(EPB) has been popularly used in passenger cars over the past ten years. With the help of the several kinds of sensors mounted in driveline for the total traction force estimation, EPB can obtain well performance on drive-off assistance and automatic parking brake. Furthermore, its AUTOHOLD function can realize automatic parking brake and ease the driver. However, given that the higher cost and complexity of this traction force estimation method based on the driveline sensors and its slower response resulted by applying maximum parking force for safety parking while driving off, a novel automatic parking brake system without these transmission system sensors, such as clutch position sensor for the cars with manual transmission, is proposed in this paper, including its control scheme and application test. Firstly, the indirect judgement method of the appropriate moment to release the parking brake, which is based on the car pitch moment when it drives off, is introduced according to the force analysis when the car is ready to go. Then a pragmatic mass estimation method for proper brake force calculation is proposed for improving the drive-off performance. In addition, for the convenience and drivability of skillful driver, as well as the system reliability, a mechanical redundant design to reserve the conventional handbrake lever is also described. Finally, various simulations based on CarSim software and road tests are performed to validate its effectiveness.