Automatic modulation classification(AMC) technology is one of the cutting-edge technologies in cognitive radio communications. AMC based on deep learning has recently attracted much attention due to its superior perfo...Automatic modulation classification(AMC) technology is one of the cutting-edge technologies in cognitive radio communications. AMC based on deep learning has recently attracted much attention due to its superior performances in classification accuracy and robustness. In this paper, we propose a novel, high resolution and multi-scale feature fusion convolutional neural network model with a squeeze-excitation block, referred to as HRSENet,to classify different kinds of modulation signals.The proposed model establishes a parallel computing mechanism of multi-resolution feature maps through the multi-layer convolution operation, which effectively reduces the information loss caused by downsampling convolution. Moreover, through dense skipconnecting at the same resolution and up-sampling or down-sampling connection at different resolutions, the low resolution representation of the deep feature maps and the high resolution representation of the shallow feature maps are simultaneously extracted and fully integrated, which is benificial to mine signal multilevel features. Finally, the feature squeeze and excitation module embedded in the decoder is used to adjust the response weights between channels, further improving classification accuracy of proposed model.The proposed HRSENet significantly outperforms existing methods in terms of classification accuracy on the public dataset “Over the Air” in signal-to-noise(SNR) ranging from-2dB to 20dB. The classification accuracy in the proposed model achieves 85.36% and97.30% at 4dB and 10dB, respectively, with the improvement by 9.71% and 5.82% compared to LWNet.Furthermore, the model also has a moderate computation complexity compared with several state-of-the-art methods.展开更多
Due to the limited computational capability and the diversity of the Internet of Things devices working in different environment,we consider fewshot learning-based automatic modulation classification(AMC)to improve it...Due to the limited computational capability and the diversity of the Internet of Things devices working in different environment,we consider fewshot learning-based automatic modulation classification(AMC)to improve its reliability.A data enhancement module(DEM)is designed by a convolutional layer to supplement frequency-domain information as well as providing nonlinear mapping that is beneficial for AMC.Multimodal network is designed to have multiple residual blocks,where each residual block has multiple convolutional kernels of different sizes for diverse feature extraction.Moreover,a deep supervised loss function is designed to supervise all parts of the network including the hidden layers and the DEM.Since different model may output different results,cooperative classifier is designed to avoid the randomness of single model and improve the reliability.Simulation results show that this few-shot learning-based AMC method can significantly improve the AMC accuracy compared to the existing methods.展开更多
Automatic modulation classification(AMC)aims at identifying the modulation of the received signals,which is a significant approach to identifying the target in military and civil applications.In this paper,a novel dat...Automatic modulation classification(AMC)aims at identifying the modulation of the received signals,which is a significant approach to identifying the target in military and civil applications.In this paper,a novel data-driven framework named convolutional and transformer-based deep neural network(CTDNN)is proposed to improve the classification performance.CTDNN can be divided into four modules,i.e.,convolutional neural network(CNN)backbone,transition module,transformer module,and final classifier.In the CNN backbone,a wide and deep convolution structure is designed,which consists of 1×15 convolution kernels and intensive cross-layer connections instead of traditional 1×3 kernels and sequential connections.In the transition module,a 1×1 convolution layer is utilized to compress the channels of the previous multi-scale CNN features.In the transformer module,three self-attention layers are designed for extracting global features and generating the classification vector.In the classifier,the final decision is made based on the maximum a posterior probability.Extensive simulations are conducted,and the result shows that our proposed CTDNN can achieve superior classification performance than traditional deep models.展开更多
An automatic method for classifying frequency shift keying(FSK),minimum shift keying(MSK),phase shift keying(PSK),quadrature amplitude modulation(QAM),and orthogonal frequency division multiplexing(OFDM)is proposed by...An automatic method for classifying frequency shift keying(FSK),minimum shift keying(MSK),phase shift keying(PSK),quadrature amplitude modulation(QAM),and orthogonal frequency division multiplexing(OFDM)is proposed by simultaneously using normality test,spectral analysis,and geometrical characteristics of in-phase-quadrature(I-Q)constellation diagram.Since the extracted features are unique for each modulation,they can be considered as a fingerprint of each modulation.We show that the proposed algorithm outperforms the previously published methods in terms of signal-to-noise ratio(SNR)and success rate.For example,the success rate of the proposed method for 64-QAM modulation at SNR=11 dB is 99%.Another advantage of the proposed method is its wide SNR range;such that the probability of classification for 16-QAM at SNR=3 dB is almost 1.The proposed method also provides a database for geometrical features of I-Q constellation diagram.By comparing and correlating the data of the provided database with the estimated I-Q diagram of the received signal,the processing gain of 4 dB is obtained.Whatever can be mentioned about the preference of the proposed algorithm are low complexity,low SNR,wide range of modulation set,and enhanced recognition at higher-order modulations.展开更多
Automatic modulation classification is the process of identification of the modulation type of a signal in a general environment. This paper proposes a new method to evaluate the tracking performance of large margin c...Automatic modulation classification is the process of identification of the modulation type of a signal in a general environment. This paper proposes a new method to evaluate the tracking performance of large margin classifier against signal-tonoise ratio (SNR), and classifies all forms of primary user's signals in a cognitive radio environment. For achieving this objective, two structures of a large margin are developed in additive white Gaussian noise (AWGN) channels with priori unknown SNR. A combination of higher order statistics and instantaneous characteristics is selected as effective features. Simulation results show that the classification rates of the proposed structures are well robust against environmental SNR changes.展开更多
A low-complexity likelihood methodology is proposed for automatic modulation classification of orthogonal space-time block code(STBC)based multiple-input multiple-output(MIMO)systems.We exploit the zero-forcing equali...A low-complexity likelihood methodology is proposed for automatic modulation classification of orthogonal space-time block code(STBC)based multiple-input multiple-output(MIMO)systems.We exploit the zero-forcing equalization technique to modify the typical average likelihood ratio test(ALRT)function.The proposed ALRT function has a low computational complexity compared to existing ALRT functions for MIMO systems classification.The proposed approach is analyzed for blind channel scenarios when the receiver has imperfect channel state information(CSI).Performance analysis is carried out for scenarios with different numbers of antennas.Alamouti-STBC systems with 2×2 and 2×1 and space-time transmit diversity with a 4×4 transmit and receive antenna configuration are considered to verify the proposed approach.Some popular modulation schemes are used as the modulation test pool.Monte-Carlo simulations are performed to evaluate the proposed methodology,using the probability of correct classification as the criterion.Simulation results show that the proposed approach has high classification accuracy at low signal-to-noise ratios and exhibits robust behavior against high CSI estimation error variance.展开更多
Deep learning(DL) requires massive volume of data to train the network. Insufficient training data will cause serious overfitting problem and degrade the classification accuracy. In order to solve this problem, a meth...Deep learning(DL) requires massive volume of data to train the network. Insufficient training data will cause serious overfitting problem and degrade the classification accuracy. In order to solve this problem, a method for automatic modulation classification(AMC) using AlexNet with data augmentation was proposed. Three data augmentation methods is considered, i.e., random erasing, CutMix, and rotation. Firstly, modulated signals are converted into constellation representations. And all constellation representations are divided into training dataset and test dataset. Then, training dataset are augmented by three methods. Secondly, the optimal value of execution probability for random erasing and CutMix are determined. Simulation results show that both of them perform optimally when execution probability is 0.5. Thirdly, the performance of three data augmentation methods are evaluated. Simulation results demonstrate that all augmentation methods can improve the classification accuracy. Rotation improves the classification accuracy by 13.04% when signal noise ratio(SNR) is 2 dB. Among three methods, rotation outperforms random erasing and CutMix when SNR is greater than-6 dB. Finally, compared with other classification algorithms, random erasing, CutMix, and rotation used in this paper achieved the performance significantly improved. It is worth mentioning that the classification accuracy can reach 90.5% with SNR at 10 dB.展开更多
The present research employs artificial intelligence to come up with an automatic solution for the modulation's classification of various radio signal varieties.As a result,the work we performed involved selecting...The present research employs artificial intelligence to come up with an automatic solution for the modulation's classification of various radio signal varieties.As a result,the work we performed involved selecting the database required for supervised deep learning,evaluating the performance of current techniques on unprocessed communication signals,and suggesting a deep learning networkbased method that would enable the classification of modulation types with the best possible ratio between computation time and accuracy.We started by examining the automatic classification models that are currently in usage.In light of the difficulty of forecasting in low Signal Noise Ratio(SNR)situations,we suggested an ensemble learning strategy based on adjusted Res Net and Transformer Neural Network,which is effective at extracting multi-scale features from the raw I/Q sequence data.Finally,we produced an architecture that is simple to use and apply to communication signals.The architecture of this solution is strong and optimal,enabling it to determine the type of modulation with up to 95%accuracy automatically.展开更多
Automatic modulation classification(AMC)aims to identify the modulation format of the received signals corrupted by the noise,which plays a major role in radio monitoring.In this paper,we propose a novel cascaded conv...Automatic modulation classification(AMC)aims to identify the modulation format of the received signals corrupted by the noise,which plays a major role in radio monitoring.In this paper,we propose a novel cascaded convolutional neural network(CasCNN)-based hierarchical digital modulation classification scheme,where M-ary phase shift keying(PSK)and M-ary quadrature amplitude modulation(QAM)modulation formats are considered to be classified.In CasCNN,two-block convolutional neural networks are cascaded.The first block network is utilized to classify the different classes of modulation formats,namely PSK and QAM.The second block is designed to identify the indexes of the modulations in the same PSK or QAM class.Moreover,it is noted that the gird constellation diagram extracted from the received signal is utilized as the inputs to the CasCNN.Extensive simulations demonstrate that CasCNN yields performance gain and performs stronger robustness to frequency offset compared with other recent methods.Specifically,CasCNN achieves 90%classification accuracy at 4 dB signal-to-noise ratio when the symbol length is set as 256.展开更多
基金supported by the Beijing Natural Science Foundation (L202003)National Natural Science Foundation of China (No. 31700479)。
文摘Automatic modulation classification(AMC) technology is one of the cutting-edge technologies in cognitive radio communications. AMC based on deep learning has recently attracted much attention due to its superior performances in classification accuracy and robustness. In this paper, we propose a novel, high resolution and multi-scale feature fusion convolutional neural network model with a squeeze-excitation block, referred to as HRSENet,to classify different kinds of modulation signals.The proposed model establishes a parallel computing mechanism of multi-resolution feature maps through the multi-layer convolution operation, which effectively reduces the information loss caused by downsampling convolution. Moreover, through dense skipconnecting at the same resolution and up-sampling or down-sampling connection at different resolutions, the low resolution representation of the deep feature maps and the high resolution representation of the shallow feature maps are simultaneously extracted and fully integrated, which is benificial to mine signal multilevel features. Finally, the feature squeeze and excitation module embedded in the decoder is used to adjust the response weights between channels, further improving classification accuracy of proposed model.The proposed HRSENet significantly outperforms existing methods in terms of classification accuracy on the public dataset “Over the Air” in signal-to-noise(SNR) ranging from-2dB to 20dB. The classification accuracy in the proposed model achieves 85.36% and97.30% at 4dB and 10dB, respectively, with the improvement by 9.71% and 5.82% compared to LWNet.Furthermore, the model also has a moderate computation complexity compared with several state-of-the-art methods.
基金supported in part by National Key Research and Development Program of China under Grant 2021YFB2900404.
文摘Due to the limited computational capability and the diversity of the Internet of Things devices working in different environment,we consider fewshot learning-based automatic modulation classification(AMC)to improve its reliability.A data enhancement module(DEM)is designed by a convolutional layer to supplement frequency-domain information as well as providing nonlinear mapping that is beneficial for AMC.Multimodal network is designed to have multiple residual blocks,where each residual block has multiple convolutional kernels of different sizes for diverse feature extraction.Moreover,a deep supervised loss function is designed to supervise all parts of the network including the hidden layers and the DEM.Since different model may output different results,cooperative classifier is designed to avoid the randomness of single model and improve the reliability.Simulation results show that this few-shot learning-based AMC method can significantly improve the AMC accuracy compared to the existing methods.
基金supported in part by the National Natural Science Foundation of China under Grant(62171045,62201090)in part by the National Key Research and Development Program of China under Grants(2020YFB1807602,2019YFB1804404).
文摘Automatic modulation classification(AMC)aims at identifying the modulation of the received signals,which is a significant approach to identifying the target in military and civil applications.In this paper,a novel data-driven framework named convolutional and transformer-based deep neural network(CTDNN)is proposed to improve the classification performance.CTDNN can be divided into four modules,i.e.,convolutional neural network(CNN)backbone,transition module,transformer module,and final classifier.In the CNN backbone,a wide and deep convolution structure is designed,which consists of 1×15 convolution kernels and intensive cross-layer connections instead of traditional 1×3 kernels and sequential connections.In the transition module,a 1×1 convolution layer is utilized to compress the channels of the previous multi-scale CNN features.In the transformer module,three self-attention layers are designed for extracting global features and generating the classification vector.In the classifier,the final decision is made based on the maximum a posterior probability.Extensive simulations are conducted,and the result shows that our proposed CTDNN can achieve superior classification performance than traditional deep models.
文摘An automatic method for classifying frequency shift keying(FSK),minimum shift keying(MSK),phase shift keying(PSK),quadrature amplitude modulation(QAM),and orthogonal frequency division multiplexing(OFDM)is proposed by simultaneously using normality test,spectral analysis,and geometrical characteristics of in-phase-quadrature(I-Q)constellation diagram.Since the extracted features are unique for each modulation,they can be considered as a fingerprint of each modulation.We show that the proposed algorithm outperforms the previously published methods in terms of signal-to-noise ratio(SNR)and success rate.For example,the success rate of the proposed method for 64-QAM modulation at SNR=11 dB is 99%.Another advantage of the proposed method is its wide SNR range;such that the probability of classification for 16-QAM at SNR=3 dB is almost 1.The proposed method also provides a database for geometrical features of I-Q constellation diagram.By comparing and correlating the data of the provided database with the estimated I-Q diagram of the received signal,the processing gain of 4 dB is obtained.Whatever can be mentioned about the preference of the proposed algorithm are low complexity,low SNR,wide range of modulation set,and enhanced recognition at higher-order modulations.
文摘Automatic modulation classification is the process of identification of the modulation type of a signal in a general environment. This paper proposes a new method to evaluate the tracking performance of large margin classifier against signal-tonoise ratio (SNR), and classifies all forms of primary user's signals in a cognitive radio environment. For achieving this objective, two structures of a large margin are developed in additive white Gaussian noise (AWGN) channels with priori unknown SNR. A combination of higher order statistics and instantaneous characteristics is selected as effective features. Simulation results show that the classification rates of the proposed structures are well robust against environmental SNR changes.
基金Project supported by the National Natural Science Foundation of China(Nos.61172078,61571224,and 61571225)Six Talent Peaks Pro ject in Jiangsu Province,China.
文摘A low-complexity likelihood methodology is proposed for automatic modulation classification of orthogonal space-time block code(STBC)based multiple-input multiple-output(MIMO)systems.We exploit the zero-forcing equalization technique to modify the typical average likelihood ratio test(ALRT)function.The proposed ALRT function has a low computational complexity compared to existing ALRT functions for MIMO systems classification.The proposed approach is analyzed for blind channel scenarios when the receiver has imperfect channel state information(CSI).Performance analysis is carried out for scenarios with different numbers of antennas.Alamouti-STBC systems with 2×2 and 2×1 and space-time transmit diversity with a 4×4 transmit and receive antenna configuration are considered to verify the proposed approach.Some popular modulation schemes are used as the modulation test pool.Monte-Carlo simulations are performed to evaluate the proposed methodology,using the probability of correct classification as the criterion.Simulation results show that the proposed approach has high classification accuracy at low signal-to-noise ratios and exhibits robust behavior against high CSI estimation error variance.
基金supported by the National Key Research and Development Program of China (2019YFC1511300)the Science and Technology Research Program of Chongqing Municipal Education Commission (KJQN201800621)the Science Foundation of Chongqing University of Posts and Telecommunications (XJG20103)。
文摘Deep learning(DL) requires massive volume of data to train the network. Insufficient training data will cause serious overfitting problem and degrade the classification accuracy. In order to solve this problem, a method for automatic modulation classification(AMC) using AlexNet with data augmentation was proposed. Three data augmentation methods is considered, i.e., random erasing, CutMix, and rotation. Firstly, modulated signals are converted into constellation representations. And all constellation representations are divided into training dataset and test dataset. Then, training dataset are augmented by three methods. Secondly, the optimal value of execution probability for random erasing and CutMix are determined. Simulation results show that both of them perform optimally when execution probability is 0.5. Thirdly, the performance of three data augmentation methods are evaluated. Simulation results demonstrate that all augmentation methods can improve the classification accuracy. Rotation improves the classification accuracy by 13.04% when signal noise ratio(SNR) is 2 dB. Among three methods, rotation outperforms random erasing and CutMix when SNR is greater than-6 dB. Finally, compared with other classification algorithms, random erasing, CutMix, and rotation used in this paper achieved the performance significantly improved. It is worth mentioning that the classification accuracy can reach 90.5% with SNR at 10 dB.
文摘The present research employs artificial intelligence to come up with an automatic solution for the modulation's classification of various radio signal varieties.As a result,the work we performed involved selecting the database required for supervised deep learning,evaluating the performance of current techniques on unprocessed communication signals,and suggesting a deep learning networkbased method that would enable the classification of modulation types with the best possible ratio between computation time and accuracy.We started by examining the automatic classification models that are currently in usage.In light of the difficulty of forecasting in low Signal Noise Ratio(SNR)situations,we suggested an ensemble learning strategy based on adjusted Res Net and Transformer Neural Network,which is effective at extracting multi-scale features from the raw I/Q sequence data.Finally,we produced an architecture that is simple to use and apply to communication signals.The architecture of this solution is strong and optimal,enabling it to determine the type of modulation with up to 95%accuracy automatically.
基金National Key Research and Development Program of China under(2019YFB1804404)Beijing Natural Science Foundation(4202046)+1 种基金National Natural Science Foundation of China(61801052)Guangdong Key Field R&D Program(2018B010124001)。
文摘Automatic modulation classification(AMC)aims to identify the modulation format of the received signals corrupted by the noise,which plays a major role in radio monitoring.In this paper,we propose a novel cascaded convolutional neural network(CasCNN)-based hierarchical digital modulation classification scheme,where M-ary phase shift keying(PSK)and M-ary quadrature amplitude modulation(QAM)modulation formats are considered to be classified.In CasCNN,two-block convolutional neural networks are cascaded.The first block network is utilized to classify the different classes of modulation formats,namely PSK and QAM.The second block is designed to identify the indexes of the modulations in the same PSK or QAM class.Moreover,it is noted that the gird constellation diagram extracted from the received signal is utilized as the inputs to the CasCNN.Extensive simulations demonstrate that CasCNN yields performance gain and performs stronger robustness to frequency offset compared with other recent methods.Specifically,CasCNN achieves 90%classification accuracy at 4 dB signal-to-noise ratio when the symbol length is set as 256.