期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
A High Resolution Convolutional Neural Network with Squeeze and Excitation Module for Automatic Modulation Classification
1
作者 Duan Ruifeng Zhao Yuanlin +3 位作者 Zhang Haiyan Li Xinze Cheng Peng Li Yonghui 《China Communications》 SCIE CSCD 2024年第10期132-147,共16页
Automatic modulation classification(AMC) technology is one of the cutting-edge technologies in cognitive radio communications. AMC based on deep learning has recently attracted much attention due to its superior perfo... Automatic modulation classification(AMC) technology is one of the cutting-edge technologies in cognitive radio communications. AMC based on deep learning has recently attracted much attention due to its superior performances in classification accuracy and robustness. In this paper, we propose a novel, high resolution and multi-scale feature fusion convolutional neural network model with a squeeze-excitation block, referred to as HRSENet,to classify different kinds of modulation signals.The proposed model establishes a parallel computing mechanism of multi-resolution feature maps through the multi-layer convolution operation, which effectively reduces the information loss caused by downsampling convolution. Moreover, through dense skipconnecting at the same resolution and up-sampling or down-sampling connection at different resolutions, the low resolution representation of the deep feature maps and the high resolution representation of the shallow feature maps are simultaneously extracted and fully integrated, which is benificial to mine signal multilevel features. Finally, the feature squeeze and excitation module embedded in the decoder is used to adjust the response weights between channels, further improving classification accuracy of proposed model.The proposed HRSENet significantly outperforms existing methods in terms of classification accuracy on the public dataset “Over the Air” in signal-to-noise(SNR) ranging from-2dB to 20dB. The classification accuracy in the proposed model achieves 85.36% and97.30% at 4dB and 10dB, respectively, with the improvement by 9.71% and 5.82% compared to LWNet.Furthermore, the model also has a moderate computation complexity compared with several state-of-the-art methods. 展开更多
关键词 automatic modulation classification deep learning feature squeeze-and-excitation HIGH-RESOLUTION MULTI-SCALE
下载PDF
A Few-Shot Learning-Based Automatic Modulation Classification Method for Internet of Things
2
作者 Aer Sileng Qi Chenhao 《China Communications》 SCIE CSCD 2024年第8期18-29,共12页
Due to the limited computational capability and the diversity of the Internet of Things devices working in different environment,we consider fewshot learning-based automatic modulation classification(AMC)to improve it... Due to the limited computational capability and the diversity of the Internet of Things devices working in different environment,we consider fewshot learning-based automatic modulation classification(AMC)to improve its reliability.A data enhancement module(DEM)is designed by a convolutional layer to supplement frequency-domain information as well as providing nonlinear mapping that is beneficial for AMC.Multimodal network is designed to have multiple residual blocks,where each residual block has multiple convolutional kernels of different sizes for diverse feature extraction.Moreover,a deep supervised loss function is designed to supervise all parts of the network including the hidden layers and the DEM.Since different model may output different results,cooperative classifier is designed to avoid the randomness of single model and improve the reliability.Simulation results show that this few-shot learning-based AMC method can significantly improve the AMC accuracy compared to the existing methods. 展开更多
关键词 automatic modulation classification(AMC) deep learning(DL) few-shot learning Internet of Things(IoT)
下载PDF
A Convolutional and Transformer Based Deep Neural Network for Automatic Modulation Classification 被引量:1
3
作者 Shanchuan Ying Sai Huang +3 位作者 Shuo Chang Zheng Yang Zhiyong Feng Ningyan Guo 《China Communications》 SCIE CSCD 2023年第5期135-147,共13页
Automatic modulation classification(AMC)aims at identifying the modulation of the received signals,which is a significant approach to identifying the target in military and civil applications.In this paper,a novel dat... Automatic modulation classification(AMC)aims at identifying the modulation of the received signals,which is a significant approach to identifying the target in military and civil applications.In this paper,a novel data-driven framework named convolutional and transformer-based deep neural network(CTDNN)is proposed to improve the classification performance.CTDNN can be divided into four modules,i.e.,convolutional neural network(CNN)backbone,transition module,transformer module,and final classifier.In the CNN backbone,a wide and deep convolution structure is designed,which consists of 1×15 convolution kernels and intensive cross-layer connections instead of traditional 1×3 kernels and sequential connections.In the transition module,a 1×1 convolution layer is utilized to compress the channels of the previous multi-scale CNN features.In the transformer module,three self-attention layers are designed for extracting global features and generating the classification vector.In the classifier,the final decision is made based on the maximum a posterior probability.Extensive simulations are conducted,and the result shows that our proposed CTDNN can achieve superior classification performance than traditional deep models. 展开更多
关键词 automatic modulation classification deep neural network convolutional neural network TRANSFORMER
下载PDF
Automatic modulation classification using modulation fingerprint extraction 被引量:2
4
作者 NOROLAHI Jafar AZMI Paeiz AHMADI Farzaneh 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第4期799-810,共12页
An automatic method for classifying frequency shift keying(FSK),minimum shift keying(MSK),phase shift keying(PSK),quadrature amplitude modulation(QAM),and orthogonal frequency division multiplexing(OFDM)is proposed by... An automatic method for classifying frequency shift keying(FSK),minimum shift keying(MSK),phase shift keying(PSK),quadrature amplitude modulation(QAM),and orthogonal frequency division multiplexing(OFDM)is proposed by simultaneously using normality test,spectral analysis,and geometrical characteristics of in-phase-quadrature(I-Q)constellation diagram.Since the extracted features are unique for each modulation,they can be considered as a fingerprint of each modulation.We show that the proposed algorithm outperforms the previously published methods in terms of signal-to-noise ratio(SNR)and success rate.For example,the success rate of the proposed method for 64-QAM modulation at SNR=11 dB is 99%.Another advantage of the proposed method is its wide SNR range;such that the probability of classification for 16-QAM at SNR=3 dB is almost 1.The proposed method also provides a database for geometrical features of I-Q constellation diagram.By comparing and correlating the data of the provided database with the estimated I-Q diagram of the received signal,the processing gain of 4 dB is obtained.Whatever can be mentioned about the preference of the proposed algorithm are low complexity,low SNR,wide range of modulation set,and enhanced recognition at higher-order modulations. 展开更多
关键词 automatic modulation classification in-phase-quadrature(I-Q)constellation diagram spectral analysis feature based modulation classification
下载PDF
Tracking performance of large margin classifier in automatic modulation classification with a software radio environment 被引量:1
5
作者 Hamidreza Hosseinzadeh 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第5期735-741,共7页
Automatic modulation classification is the process of identification of the modulation type of a signal in a general environment. This paper proposes a new method to evaluate the tracking performance of large margin c... Automatic modulation classification is the process of identification of the modulation type of a signal in a general environment. This paper proposes a new method to evaluate the tracking performance of large margin classifier against signal-tonoise ratio (SNR), and classifies all forms of primary user's signals in a cognitive radio environment. For achieving this objective, two structures of a large margin are developed in additive white Gaussian noise (AWGN) channels with priori unknown SNR. A combination of higher order statistics and instantaneous characteristics is selected as effective features. Simulation results show that the classification rates of the proposed structures are well robust against environmental SNR changes. 展开更多
关键词 automatic modulation classification (AMC) tracking performance evaluation passive-aggressive (PA) classifier self- training cognitive radio (CR).
下载PDF
An effective approach for low-complexity maximum likelihood based automatic modulation classification of STBC-MIMO systems 被引量:2
6
作者 Maqsood H.SHAH Xiao-yu DANG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2020年第3期465-476,共12页
A low-complexity likelihood methodology is proposed for automatic modulation classification of orthogonal space-time block code(STBC)based multiple-input multiple-output(MIMO)systems.We exploit the zero-forcing equali... A low-complexity likelihood methodology is proposed for automatic modulation classification of orthogonal space-time block code(STBC)based multiple-input multiple-output(MIMO)systems.We exploit the zero-forcing equalization technique to modify the typical average likelihood ratio test(ALRT)function.The proposed ALRT function has a low computational complexity compared to existing ALRT functions for MIMO systems classification.The proposed approach is analyzed for blind channel scenarios when the receiver has imperfect channel state information(CSI).Performance analysis is carried out for scenarios with different numbers of antennas.Alamouti-STBC systems with 2×2 and 2×1 and space-time transmit diversity with a 4×4 transmit and receive antenna configuration are considered to verify the proposed approach.Some popular modulation schemes are used as the modulation test pool.Monte-Carlo simulations are performed to evaluate the proposed methodology,using the probability of correct classification as the criterion.Simulation results show that the proposed approach has high classification accuracy at low signal-to-noise ratios and exhibits robust behavior against high CSI estimation error variance. 展开更多
关键词 Multiple-input multiple-output Space-time block code Maximum likelihood automatic modulation classification ZERO-FORCING
原文传递
Automatic modulation classification based on Alex Net with data augmentation 被引量:2
7
作者 Zhang Chengchang Xu Yu +1 位作者 Yang Jianpeng Li Xiaomeng 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2022年第5期51-61,共11页
Deep learning(DL) requires massive volume of data to train the network. Insufficient training data will cause serious overfitting problem and degrade the classification accuracy. In order to solve this problem, a meth... Deep learning(DL) requires massive volume of data to train the network. Insufficient training data will cause serious overfitting problem and degrade the classification accuracy. In order to solve this problem, a method for automatic modulation classification(AMC) using AlexNet with data augmentation was proposed. Three data augmentation methods is considered, i.e., random erasing, CutMix, and rotation. Firstly, modulated signals are converted into constellation representations. And all constellation representations are divided into training dataset and test dataset. Then, training dataset are augmented by three methods. Secondly, the optimal value of execution probability for random erasing and CutMix are determined. Simulation results show that both of them perform optimally when execution probability is 0.5. Thirdly, the performance of three data augmentation methods are evaluated. Simulation results demonstrate that all augmentation methods can improve the classification accuracy. Rotation improves the classification accuracy by 13.04% when signal noise ratio(SNR) is 2 dB. Among three methods, rotation outperforms random erasing and CutMix when SNR is greater than-6 dB. Finally, compared with other classification algorithms, random erasing, CutMix, and rotation used in this paper achieved the performance significantly improved. It is worth mentioning that the classification accuracy can reach 90.5% with SNR at 10 dB. 展开更多
关键词 automatic modulation classification(AMC) data augmentation random erasing CutMix ROTATION deep learning(DL)
原文传递
Classifying Modulations in Communication Intelligence Using Deep Learning Networks
8
作者 Yahya BENREMDANE Said JAMAL +2 位作者 Oumaima TAHERI Jawad LAKZIZ Said OUASKIT 《Journal of Systems Science and Information》 CSCD 2024年第3期379-392,共14页
The present research employs artificial intelligence to come up with an automatic solution for the modulation's classification of various radio signal varieties.As a result,the work we performed involved selecting... The present research employs artificial intelligence to come up with an automatic solution for the modulation's classification of various radio signal varieties.As a result,the work we performed involved selecting the database required for supervised deep learning,evaluating the performance of current techniques on unprocessed communication signals,and suggesting a deep learning networkbased method that would enable the classification of modulation types with the best possible ratio between computation time and accuracy.We started by examining the automatic classification models that are currently in usage.In light of the difficulty of forecasting in low Signal Noise Ratio(SNR)situations,we suggested an ensemble learning strategy based on adjusted Res Net and Transformer Neural Network,which is effective at extracting multi-scale features from the raw I/Q sequence data.Finally,we produced an architecture that is simple to use and apply to communication signals.The architecture of this solution is strong and optimal,enabling it to determine the type of modulation with up to 95%accuracy automatically. 展开更多
关键词 automatic modulation classification artificial intelligence deep learning radio frequency electronicwarfare
原文传递
Hierarchical Digital Modulation Classification Using Cascaded Convolutional Neural Network 被引量:1
9
作者 Juanjuan Huang Sai Huang +3 位作者 Yuqi Zeng Hao Chen Shuo Chang Yifan Zhang 《Journal of Communications and Information Networks》 CSCD 2021年第1期72-81,共10页
Automatic modulation classification(AMC)aims to identify the modulation format of the received signals corrupted by the noise,which plays a major role in radio monitoring.In this paper,we propose a novel cascaded conv... Automatic modulation classification(AMC)aims to identify the modulation format of the received signals corrupted by the noise,which plays a major role in radio monitoring.In this paper,we propose a novel cascaded convolutional neural network(CasCNN)-based hierarchical digital modulation classification scheme,where M-ary phase shift keying(PSK)and M-ary quadrature amplitude modulation(QAM)modulation formats are considered to be classified.In CasCNN,two-block convolutional neural networks are cascaded.The first block network is utilized to classify the different classes of modulation formats,namely PSK and QAM.The second block is designed to identify the indexes of the modulations in the same PSK or QAM class.Moreover,it is noted that the gird constellation diagram extracted from the received signal is utilized as the inputs to the CasCNN.Extensive simulations demonstrate that CasCNN yields performance gain and performs stronger robustness to frequency offset compared with other recent methods.Specifically,CasCNN achieves 90%classification accuracy at 4 dB signal-to-noise ratio when the symbol length is set as 256. 展开更多
关键词 automatic modulation classification cascaded network convolutional neural network deep learning hierarchical classification
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部