An automatic monitoring method of the 3-D deformation is presented for crustal fault based on laser and machine vision. The laser source and screen are independently set up in the headwall and footwall, the collimated...An automatic monitoring method of the 3-D deformation is presented for crustal fault based on laser and machine vision. The laser source and screen are independently set up in the headwall and footwall, the collimated laser beam creates a circular spot on the screen, meanwhile, the industrial camera captures the tiny deformation of the crustal fault by monitoring the change of the spot position. This method significantly reduces the cost of equipment and labor, provides daily sampling to ensure high continuity of data. A prototype of the automatic monitoring system is developed, and a repeatability test indicates that the error of spot jitter can be minimized by consecutive samples. Meanwhile, the environmental correction model is determined to ensure that environmental changes do not disturb the system. Furthermore, the automatic monitoring system has been applied at the deformation monitoring station(KJX02) of China Beishan underground research laboratory, where continuous deformation monitoring is underway.展开更多
To realize high-precision automatic measurement of two-dimensional geometric features on parts, a cooperative measurement system based on machine vision is constructed. Its hardware structure, functional composition a...To realize high-precision automatic measurement of two-dimensional geometric features on parts, a cooperative measurement system based on machine vision is constructed. Its hardware structure, functional composition and working principle are introduced. The mapping relationship between the feature image coordinates and the measuring space coordinates is established. The method of measuring path planning of small field of view (FOV) images is proposed. With the cooperation of the panoramic image of the object to be measured, the small FOV images with high object plane resolution are acquired automatically. Then, the auxiliary measuring characteristics are constructed and the parameters of the features to be measured are automatically extracted. Experimental results show that the absolute value of relative error is less than 0. 03% when applying the cooperative measurement system to gauge the hole distance of 100 mm nominal size. When the object plane resolving power of the small FOV images is 16 times that of the large FOV image, the measurement accuracy of small FOV images is improved by 14 times compared with the large FOV image. It is suitable for high-precision automatic measurement of two-dimensional complex geometric features distributed on large scale parts.展开更多
Bladder urothelial carcinoma is the most common malignant tumor disease in urinary system,and its incidence rate ranks ninth in the world.In recent years,the continuous development of hyperspectral imaging technology ...Bladder urothelial carcinoma is the most common malignant tumor disease in urinary system,and its incidence rate ranks ninth in the world.In recent years,the continuous development of hyperspectral imaging technology has provided a new tool for the auxiliary diagnosis of bladder cancer.In this study,based on microscopic hyperspectral data,an automatic detection algorithm of bladder tumor cells combining color features and shape features is proposed.Support vector machine(SVM)is used to build classification models and compare the classification performance of spectral feature,spectral and shape fusion feature,and the fusion feature proposed in this paper on the same classifier.The results show that the sensitivity,specificity,and accuracy of our classification algorithm based on shape and color fusion features are 0.952,0.897,and 0.920,respectively,which are better than the classification algorithm only using spectral features.Therefore,this study can effectively extract the cell features of bladder urothelial carcinoma smear,thus achieving automatic,real-time,and noninvasive detection of bladder tumor cells,and then helping doctors improve the e±ciency of pathological diagnosis of bladder urothelial cancer,and providing a reliable basis for doctors to choose treatment plans and judge the prognosis of the disease.展开更多
Aiming at the problem that the data-driven automatic correlation methods which are difficult to adapt to the automatic correlation of oil-bearing strata with large changes in lateral sedimentary facies and strata thic...Aiming at the problem that the data-driven automatic correlation methods which are difficult to adapt to the automatic correlation of oil-bearing strata with large changes in lateral sedimentary facies and strata thickness,an intelligent automatic correlation method of oil-bearing strata based on pattern constraints is formed.We propose to introduce knowledge-driven in automatic correlation of oil-bearing strata,constraining the correlation process by stratigraphic sedimentary patterns and improving the similarity measuring machine and conditional constraint dynamic time warping algorithm to automate the correlation of marker layers and the interfaces of each stratum.The application in Shishen 100 block in the Shinan Oilfield of the Bohai Bay Basin shows that the coincidence rate of the marker layers identified by this method is over 95.00%,and the average coincidence rate of identified oil-bearing strata reaches 90.02% compared to artificial correlation results,which is about 17 percentage points higher than that of the existing automatic correlation methods.The accuracy of the automatic correlation of oil-bearing strata has been effectively improved.展开更多
Monitring pest populations in paddy fields is important to effectively implement integrated pest management.Light traps are widely used to monitor field pests all over the world.Most conventional light traps still inv...Monitring pest populations in paddy fields is important to effectively implement integrated pest management.Light traps are widely used to monitor field pests all over the world.Most conventional light traps still involve manual identification of target pests from lots of trapped insects,which is time-consuming,labor-intensive and error-prone,especially in pest peak periods.In this paper,we developed an automatic monitoring system for rice light-trap pests based on machine vision.This system is composed of an itelligent light trap,a computer or mobile phone client platform and a cloud server.The light trap firstly traps,kills and disperses insects,then collects images of trapped insects and sends each image to the cloud server.Five target pests in images are automatically identifed and counted by pest identification models loaded in the server.To avoid light-trap insects piling up,a vibration plate and a moving rotation conveyor belt are adopted to disperse these trapped insects.There was a close correlation(r=0.92)between our automatic and manual identification methods based on the daily pest number of one-year images from one light trap.Field experiments demonstrated the effectiveness and accuracy of our automatic light trap monitoring system.展开更多
A full automatic welding machine for spherical tanks' all position multi layer welds has been developed. This machine is mainly composed of a two dimension seam tracking system based on microcomputer's memor...A full automatic welding machine for spherical tanks' all position multi layer welds has been developed. This machine is mainly composed of a two dimension seam tracking system based on microcomputer's memory and a welding tractor as well as rail. The main features of the machine are: while welding the first layer of a seam, its microcomputer system can analyze and store the tracing information from a two dimension sensor, and control the welding head device to realize two dimension real time tracing; while welding the second layer up to the top layer of the seam, it can realize two dimension tracing based on the memorial data, automatically determine the layer number and continually sway the welding head. The welding test shows that the machine has good tracing and welding behavior, and is suitable for spherical tank's all position multi layer welds.展开更多
The pipeline all-position automatic welding machine system is a special welding system for automatically welding circumferential joint of pipeline on site, which has been widely used to the long-distance pipeline cons...The pipeline all-position automatic welding machine system is a special welding system for automatically welding circumferential joint of pipeline on site, which has been widely used to the long-distance pipeline construction projects due to the advantages of automatic control for welding parameters at all-position, moving speed of bugs and operating. In this paper, the key control technologies of PAWM all-position automatic welding machine ( developed by Pipeline Research Institute of CNPC) such us the automatic control system, control software, personal digital assistant (PDA) software and complex programmable logic device ( CPLD ) program as well us the control method of welding parameter have been described detailedly. With the higher welding quality, higher welding effwiency and lower labor intensity, PA WM all-position automatic welding machine has been successfully applied in many famous pipeline construction projects.展开更多
Automatic speaker recognition(ASR)systems are the field of Human-machine interaction and scientists have been using feature extraction and feature matching methods to analyze and synthesize these signals.One of the mo...Automatic speaker recognition(ASR)systems are the field of Human-machine interaction and scientists have been using feature extraction and feature matching methods to analyze and synthesize these signals.One of the most commonly used methods for feature extraction is Mel Frequency Cepstral Coefficients(MFCCs).Recent researches show that MFCCs are successful in processing the voice signal with high accuracies.MFCCs represents a sequence of voice signal-specific features.This experimental analysis is proposed to distinguish Turkish speakers by extracting the MFCCs from the speech recordings.Since the human perception of sound is not linear,after the filterbank step in theMFCC method,we converted the obtained log filterbanks into decibel(dB)features-based spectrograms without applying the Discrete Cosine Transform(DCT).A new dataset was created with converted spectrogram into a 2-D array.Several learning algorithms were implementedwith a 10-fold cross-validationmethod to detect the speaker.The highest accuracy of 90.2%was achieved using Multi-layer Perceptron(MLP)with tanh activation function.The most important output of this study is the inclusion of human voice as a new feature set.展开更多
In order to improve measurement accuracy of moving target signals, an automatic target recognition model of moving target signals was established based on empirical mode decomposition(EMD) and support vector machine(S...In order to improve measurement accuracy of moving target signals, an automatic target recognition model of moving target signals was established based on empirical mode decomposition(EMD) and support vector machine(SVM). Automatic target recognition process on the nonlinear and non-stationary of Doppler signals of military target by using automatic target recognition model can be expressed as follows. Firstly, the nonlinearity and non-stationary of Doppler signals were decomposed into a set of intrinsic mode functions(IMFs) using EMD. After the Hilbert transform of IMF, the energy ratio of each IMF to the total IMFs can be extracted as the features of military target. Then, the SVM was trained through using the energy ratio to classify the military targets, and genetic algorithm(GA) was used to optimize SVM parameters in the solution space. The experimental results show that this algorithm can achieve the recognition accuracies of 86.15%, 87.93%, and 82.28% for tank, vehicle and soldier, respectively.展开更多
Algorithm of STA/LTA is frequently used in automatic signal detection, in which the range of detection threshold is (0, ∞), the optimal threshold should be determined by experiment to make a balance between false d...Algorithm of STA/LTA is frequently used in automatic signal detection, in which the range of detection threshold is (0, ∞), the optimal threshold should be determined by experiment to make a balance between false detection and missing detection. By using the theory of pattern recognition, a new algorithm for automatic signal detection based on support vector machine was proposed and the method of preprocess and pattern feature extraction were dis- cussed as well as the selection of kernel function for support vector machine. The detection performance of the new algorithm was analyzed by means of real seismic data. The experiments showed that the new method could simplify the selection of threshold and detect signal accurately. In addition to the better performance of anti-noise, the ratio of false detection could decrease 85% in comparison with that of STA/LTA.展开更多
This paper deals with the structure, components, characteristics and work principle of a newly developed automatic arc welding machine for saddle joint seams on large diameter cylinders. The equations for designing th...This paper deals with the structure, components, characteristics and work principle of a newly developed automatic arc welding machine for saddle joint seams on large diameter cylinders. The equations for designing the geometry and dimensions of the cam controlling the moving locus of the welding torch have been derived. This welding machine has successfully been used in automatic welding saddle joint seams on boiler drums with good results and low cost.展开更多
The new model Hitachi fully automatic washing machine is made by the Shanghai Hitachi Shangling Machinery Co. Ltd, using Japanese Hitachi technology and equipment. The product adopts a smooth, clean and abrasion-corro...The new model Hitachi fully automatic washing machine is made by the Shanghai Hitachi Shangling Machinery Co. Ltd, using Japanese Hitachi technology and equipment. The product adopts a smooth, clean and abrasion-corrosion-proof tub made of stainless titanium alloy steel. The wash tub has a large capacity and does not damage the clothing. The rotation speed is 900 per minute. The drying ability is 10% higher than original展开更多
Automatic image annotation(AIA)has become an important and challenging problem in computer vision due to the existence of semantic gap.In this paper,a novel support vector machine with mixture of kernels(SVM-MK)for au...Automatic image annotation(AIA)has become an important and challenging problem in computer vision due to the existence of semantic gap.In this paper,a novel support vector machine with mixture of kernels(SVM-MK)for automatic image annotation is proposed.On one hand,the combined global and local block-based image features are extracted in order to reflect the intrinsic content of images as complete as possible.On the other hand,SVM-MK is constructed to shoot for better annotating performance.Experimental results on Corel dataset show that the proposed image feature representation method as well as automatic image annotation classifier,SVM-MK,can achieve higher annotating accuracy than SVM with any single kernel and mi-SVM for semantic image annotation.展开更多
Soya-bean milk has been a favorite drink for the Chinese people since ancient times. With the development of health consciousness, this low heat, low fat and highly nutritious natural drink has become popular. However...Soya-bean milk has been a favorite drink for the Chinese people since ancient times. With the development of health consciousness, this low heat, low fat and highly nutritious natural drink has become popular. However, backward production technology and a shortage of marketing channels have prevented people from having easy access to fresh soya-bean milk. The Qingzhou brand automatic household soya-bean milk machine developed by the Qingzhou Trade Company in Beijing is produced展开更多
The all position automatic welding machine system is the special welding system for pipeline girth automatic welding on site, which has been widely used in the long distance pipeline construction projects due to the a...The all position automatic welding machine system is the special welding system for pipeline girth automatic welding on site, which has been widely used in the long distance pipeline construction projects due to the advantages of automatic control for welding parameters at all position, moving speed of bugs and operating. This automatic pipeline welding system has been successfully used in several main pipeline projects in China, and has been approved by the constructors with the benefits of higher quality passing rate, higher welding efficiency and lower labor intensity.展开更多
With the rapid development of social economy,the society has entered into a new stage of development,especially in new media under the background of rapid development,makes the importance of news and information to ge...With the rapid development of social economy,the society has entered into a new stage of development,especially in new media under the background of rapid development,makes the importance of news and information to get the comprehensive promotion,and in order to further identify the positive and negative news,should be fully using machine learning methods,based on the emotion to realize the automatic classifying of news,in order to improve the efficiency of news classification.Therefore,the article first makes clear the basic outline of news sentiment classification.Secondly,the specific way of automatic classification of news emotion is deeply analyzed.On the basis of this,the paper puts forward the concrete measures of automatic classification of news emotion by using machine learning.展开更多
Perinatal hypoxic-ischemic-encephalopathy significantly contributes to neonatal death and life-long disability such as cerebral palsy. Advances in signal processing and machine learning have provided the research comm...Perinatal hypoxic-ischemic-encephalopathy significantly contributes to neonatal death and life-long disability such as cerebral palsy. Advances in signal processing and machine learning have provided the research community with an opportunity to develop automated real-time identification techniques to detect the signs of hypoxic-ischemic-encephalopathy in larger electroencephalography/amplitude-integrated electroencephalography data sets more easily. This review details the recent achievements, performed by a number of prominent research groups across the world, in the automatic identification and classification of hypoxic-ischemic epileptiform neonatal seizures using advanced signal processing and machine learning techniques. This review also addresses the clinical challenges that current automated techniques face in order to be fully utilized by clinicians, and highlights the importance of upgrading the current clinical bedside sampling frequencies to higher sampling rates in order to provide better hypoxic-ischemic biomarker detection frameworks. Additionally, the article highlights that current clinical automated epileptiform detection strategies for human neonates have been only concerned with seizure detection after the therapeutic latent phase of injury. Whereas recent animal studies have demonstrated that the latent phase of opportunity is critically important for early diagnosis of hypoxic-ischemic-encephalopathy electroencephalography biomarkers and although difficult, detection strategies could utilize biomarkers in the latent phase to also predict the onset of future seizures.展开更多
The automatic detection and identification of electroencephalogram waves play an important role in the prediction, diagnosis and treatment of epileptic seizures. In this study, a nonlinear dynamics index–approximate ...The automatic detection and identification of electroencephalogram waves play an important role in the prediction, diagnosis and treatment of epileptic seizures. In this study, a nonlinear dynamics index–approximate entropy and a support vector machine that has strong generalization ability were applied to classify electroencephalogram signals at epileptic interictal and ictal periods. Our aim was to verify whether approximate entropy waves can be effectively applied to the automatic real-time detection of epilepsy in the electroencephalogram, and to explore its generalization ability as a classifier trained using a nonlinear dynamics index. Four patients presenting with partial epileptic seizures were included in this study. They were all diagnosed with neocortex localized epilepsy and epileptic foci were clearly observed by electroencephalogram. The electroencephalogram data form the four involved patients were segmented and the characteristic values of each segment, that is, the approximate entropy, were extracted. The support vector machine classifier was constructed with the approximate entropy extracted from one epileptic case, and then electroencephalogram waves of the other three cases were classified, reaching a 93.33% accuracy rate. Our findings suggest that the use of approximate entropy allows the automatic real-time detection of electroencephalogram data in epileptic cases. The combination of approximate entropy and support vector machines shows good generalization ability for the classification of electroencephalogram signals for epilepsy.展开更多
Discovery of useful forecasting rules from observational weather data is an outstanding interesting topic.The traditional methods of acquiring forecasting knowledge are manual analysis and investigation performed by h...Discovery of useful forecasting rules from observational weather data is an outstanding interesting topic.The traditional methods of acquiring forecasting knowledge are manual analysis and investigation performed by human scientists.This paper presents the experimental results of an automatic machine learning system which derives forecasting rules from real observational data.We tested the system on the two large real data sets from the areas of centra! China and Victoria of Australia.The experimental results show that the forecasting rules discovered by the system are very competitive to human experts.The forecasting accuracy rates are 86.4% and 78% of the two data sets respectively展开更多
Purpose:The main objective of this work is to show the potentialities of recently developed approaches for automatic knowledge extraction directly from the universities’websites.The information automatically extracte...Purpose:The main objective of this work is to show the potentialities of recently developed approaches for automatic knowledge extraction directly from the universities’websites.The information automatically extracted can be potentially updated with a frequency higher than once per year,and be safe from manipulations or misinterpretations.Moreover,this approach allows us flexibility in collecting indicators about the efficiency of universities’websites and their effectiveness in disseminating key contents.These new indicators can complement traditional indicators of scientific research(e.g.number of articles and number of citations)and teaching(e.g.number of students and graduates)by introducing further dimensions to allow new insights for“profiling”the analyzed universities.Design/methodology/approach:Webometrics relies on web mining methods and techniques to perform quantitative analyses of the web.This study implements an advanced application of the webometric approach,exploiting all the three categories of web mining:web content mining;web structure mining;web usage mining.The information to compute our indicators has been extracted from the universities’websites by using web scraping and text mining techniques.The scraped information has been stored in a NoSQL DB according to a semistructured form to allow for retrieving information efficiently by text mining techniques.This provides increased flexibility in the design of new indicators,opening the door to new types of analyses.Some data have also been collected by means of batch interrogations of search engines(Bing,www.bing.com)or from a leading provider of Web analytics(SimilarWeb,http://www.similarweb.com).The information extracted from the Web has been combined with the University structural information taken from the European Tertiary Education Register(https://eter.joanneum.at/#/home),a database collecting information on Higher Education Institutions(HEIs)at European level.All the above was used to perform a clusterization of 79 Italian universities based on structural and digital indicators.Findings:The main findings of this study concern the evaluation of the potential in digitalization of universities,in particular by presenting techniques for the automatic extraction of information from the web to build indicators of quality and impact of universities’websites.These indicators can complement traditional indicators and can be used to identify groups of universities with common features using clustering techniques working with the above indicators.Research limitations:The results reported in this study refers to Italian universities only,but the approach could be extended to other university systems abroad.Practical implications:The approach proposed in this study and its illustration on Italian universities show the usefulness of recently introduced automatic data extraction and web scraping approaches and its practical relevance for characterizing and profiling the activities of universities on the basis of their websites.The approach could be applied to other university systems.Originality/value:This work applies for the first time to university websites some recently introduced techniques for automatic knowledge extraction based on web scraping,optical character recognition and nontrivial text mining operations(Bruni&Bianchi,2020).展开更多
基金supported by Earthquake Sciences Spark Programs of China Earthquake Administration(No.XH22020YA)Science Innovation Fund granted by the First Monitoring and Application Center of China Earthquake Administration(No.FMC202309).
文摘An automatic monitoring method of the 3-D deformation is presented for crustal fault based on laser and machine vision. The laser source and screen are independently set up in the headwall and footwall, the collimated laser beam creates a circular spot on the screen, meanwhile, the industrial camera captures the tiny deformation of the crustal fault by monitoring the change of the spot position. This method significantly reduces the cost of equipment and labor, provides daily sampling to ensure high continuity of data. A prototype of the automatic monitoring system is developed, and a repeatability test indicates that the error of spot jitter can be minimized by consecutive samples. Meanwhile, the environmental correction model is determined to ensure that environmental changes do not disturb the system. Furthermore, the automatic monitoring system has been applied at the deformation monitoring station(KJX02) of China Beishan underground research laboratory, where continuous deformation monitoring is underway.
基金The National Natural Science Foundation of China(No.51175267)the Natural Science Foundation of Jiangsu Province(No.BK2010481)+2 种基金the Ph.D.Programs Foundation of Ministry of Education of China(No.20113219120004)China Postdoctoral Science Foundation(No.20100481148)the Postdoctoral Science Foundation of Jiangsu Province(No.1001004B)
文摘To realize high-precision automatic measurement of two-dimensional geometric features on parts, a cooperative measurement system based on machine vision is constructed. Its hardware structure, functional composition and working principle are introduced. The mapping relationship between the feature image coordinates and the measuring space coordinates is established. The method of measuring path planning of small field of view (FOV) images is proposed. With the cooperation of the panoramic image of the object to be measured, the small FOV images with high object plane resolution are acquired automatically. Then, the auxiliary measuring characteristics are constructed and the parameters of the features to be measured are automatically extracted. Experimental results show that the absolute value of relative error is less than 0. 03% when applying the cooperative measurement system to gauge the hole distance of 100 mm nominal size. When the object plane resolving power of the small FOV images is 16 times that of the large FOV image, the measurement accuracy of small FOV images is improved by 14 times compared with the large FOV image. It is suitable for high-precision automatic measurement of two-dimensional complex geometric features distributed on large scale parts.
基金Bethune Medical Engineering and Instrument Center Fund(E10133Y8H0)Jilin province science and technology development plan project(20210204216YY,20210204146YY).
文摘Bladder urothelial carcinoma is the most common malignant tumor disease in urinary system,and its incidence rate ranks ninth in the world.In recent years,the continuous development of hyperspectral imaging technology has provided a new tool for the auxiliary diagnosis of bladder cancer.In this study,based on microscopic hyperspectral data,an automatic detection algorithm of bladder tumor cells combining color features and shape features is proposed.Support vector machine(SVM)is used to build classification models and compare the classification performance of spectral feature,spectral and shape fusion feature,and the fusion feature proposed in this paper on the same classifier.The results show that the sensitivity,specificity,and accuracy of our classification algorithm based on shape and color fusion features are 0.952,0.897,and 0.920,respectively,which are better than the classification algorithm only using spectral features.Therefore,this study can effectively extract the cell features of bladder urothelial carcinoma smear,thus achieving automatic,real-time,and noninvasive detection of bladder tumor cells,and then helping doctors improve the e±ciency of pathological diagnosis of bladder urothelial cancer,and providing a reliable basis for doctors to choose treatment plans and judge the prognosis of the disease.
基金Supported by the National Natural Science Foundation of China(42272110)CNPC-China University of Petroleum(Beijing)Strategic Cooperation Project(ZLZX2020-02).
文摘Aiming at the problem that the data-driven automatic correlation methods which are difficult to adapt to the automatic correlation of oil-bearing strata with large changes in lateral sedimentary facies and strata thickness,an intelligent automatic correlation method of oil-bearing strata based on pattern constraints is formed.We propose to introduce knowledge-driven in automatic correlation of oil-bearing strata,constraining the correlation process by stratigraphic sedimentary patterns and improving the similarity measuring machine and conditional constraint dynamic time warping algorithm to automate the correlation of marker layers and the interfaces of each stratum.The application in Shishen 100 block in the Shinan Oilfield of the Bohai Bay Basin shows that the coincidence rate of the marker layers identified by this method is over 95.00%,and the average coincidence rate of identified oil-bearing strata reaches 90.02% compared to artificial correlation results,which is about 17 percentage points higher than that of the existing automatic correlation methods.The accuracy of the automatic correlation of oil-bearing strata has been effectively improved.
基金Supported by the Fundamental Public Welfare Research Program of Zhejiang Provincial Natural Science Foundation,China(LGN18C140007 and Y20C140024)the National High Technology Research and Development Program of China(863 Program,2013AA102402)the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences.
文摘Monitring pest populations in paddy fields is important to effectively implement integrated pest management.Light traps are widely used to monitor field pests all over the world.Most conventional light traps still involve manual identification of target pests from lots of trapped insects,which is time-consuming,labor-intensive and error-prone,especially in pest peak periods.In this paper,we developed an automatic monitoring system for rice light-trap pests based on machine vision.This system is composed of an itelligent light trap,a computer or mobile phone client platform and a cloud server.The light trap firstly traps,kills and disperses insects,then collects images of trapped insects and sends each image to the cloud server.Five target pests in images are automatically identifed and counted by pest identification models loaded in the server.To avoid light-trap insects piling up,a vibration plate and a moving rotation conveyor belt are adopted to disperse these trapped insects.There was a close correlation(r=0.92)between our automatic and manual identification methods based on the daily pest number of one-year images from one light trap.Field experiments demonstrated the effectiveness and accuracy of our automatic light trap monitoring system.
文摘A full automatic welding machine for spherical tanks' all position multi layer welds has been developed. This machine is mainly composed of a two dimension seam tracking system based on microcomputer's memory and a welding tractor as well as rail. The main features of the machine are: while welding the first layer of a seam, its microcomputer system can analyze and store the tracing information from a two dimension sensor, and control the welding head device to realize two dimension real time tracing; while welding the second layer up to the top layer of the seam, it can realize two dimension tracing based on the memorial data, automatically determine the layer number and continually sway the welding head. The welding test shows that the machine has good tracing and welding behavior, and is suitable for spherical tank's all position multi layer welds.
文摘The pipeline all-position automatic welding machine system is a special welding system for automatically welding circumferential joint of pipeline on site, which has been widely used to the long-distance pipeline construction projects due to the advantages of automatic control for welding parameters at all-position, moving speed of bugs and operating. In this paper, the key control technologies of PAWM all-position automatic welding machine ( developed by Pipeline Research Institute of CNPC) such us the automatic control system, control software, personal digital assistant (PDA) software and complex programmable logic device ( CPLD ) program as well us the control method of welding parameter have been described detailedly. With the higher welding quality, higher welding effwiency and lower labor intensity, PA WM all-position automatic welding machine has been successfully applied in many famous pipeline construction projects.
基金This work was supported by the GRRC program of Gyeonggi province.[GRRC-Gachon2020(B04),Development of AI-based Healthcare Devices].
文摘Automatic speaker recognition(ASR)systems are the field of Human-machine interaction and scientists have been using feature extraction and feature matching methods to analyze and synthesize these signals.One of the most commonly used methods for feature extraction is Mel Frequency Cepstral Coefficients(MFCCs).Recent researches show that MFCCs are successful in processing the voice signal with high accuracies.MFCCs represents a sequence of voice signal-specific features.This experimental analysis is proposed to distinguish Turkish speakers by extracting the MFCCs from the speech recordings.Since the human perception of sound is not linear,after the filterbank step in theMFCC method,we converted the obtained log filterbanks into decibel(dB)features-based spectrograms without applying the Discrete Cosine Transform(DCT).A new dataset was created with converted spectrogram into a 2-D array.Several learning algorithms were implementedwith a 10-fold cross-validationmethod to detect the speaker.The highest accuracy of 90.2%was achieved using Multi-layer Perceptron(MLP)with tanh activation function.The most important output of this study is the inclusion of human voice as a new feature set.
基金Projects(61471370,61401479)supported by the National Natural Science Foundation of China
文摘In order to improve measurement accuracy of moving target signals, an automatic target recognition model of moving target signals was established based on empirical mode decomposition(EMD) and support vector machine(SVM). Automatic target recognition process on the nonlinear and non-stationary of Doppler signals of military target by using automatic target recognition model can be expressed as follows. Firstly, the nonlinearity and non-stationary of Doppler signals were decomposed into a set of intrinsic mode functions(IMFs) using EMD. After the Hilbert transform of IMF, the energy ratio of each IMF to the total IMFs can be extracted as the features of military target. Then, the SVM was trained through using the energy ratio to classify the military targets, and genetic algorithm(GA) was used to optimize SVM parameters in the solution space. The experimental results show that this algorithm can achieve the recognition accuracies of 86.15%, 87.93%, and 82.28% for tank, vehicle and soldier, respectively.
文摘Algorithm of STA/LTA is frequently used in automatic signal detection, in which the range of detection threshold is (0, ∞), the optimal threshold should be determined by experiment to make a balance between false detection and missing detection. By using the theory of pattern recognition, a new algorithm for automatic signal detection based on support vector machine was proposed and the method of preprocess and pattern feature extraction were dis- cussed as well as the selection of kernel function for support vector machine. The detection performance of the new algorithm was analyzed by means of real seismic data. The experiments showed that the new method could simplify the selection of threshold and detect signal accurately. In addition to the better performance of anti-noise, the ratio of false detection could decrease 85% in comparison with that of STA/LTA.
文摘This paper deals with the structure, components, characteristics and work principle of a newly developed automatic arc welding machine for saddle joint seams on large diameter cylinders. The equations for designing the geometry and dimensions of the cam controlling the moving locus of the welding torch have been derived. This welding machine has successfully been used in automatic welding saddle joint seams on boiler drums with good results and low cost.
文摘The new model Hitachi fully automatic washing machine is made by the Shanghai Hitachi Shangling Machinery Co. Ltd, using Japanese Hitachi technology and equipment. The product adopts a smooth, clean and abrasion-corrosion-proof tub made of stainless titanium alloy steel. The wash tub has a large capacity and does not damage the clothing. The rotation speed is 900 per minute. The drying ability is 10% higher than original
基金Supported by the National Basic Research Priorities Programme(No.2007CB311004)the National Natural Science Foundation of China(No.61035003,60933004,60903141,60970088,61072085)
文摘Automatic image annotation(AIA)has become an important and challenging problem in computer vision due to the existence of semantic gap.In this paper,a novel support vector machine with mixture of kernels(SVM-MK)for automatic image annotation is proposed.On one hand,the combined global and local block-based image features are extracted in order to reflect the intrinsic content of images as complete as possible.On the other hand,SVM-MK is constructed to shoot for better annotating performance.Experimental results on Corel dataset show that the proposed image feature representation method as well as automatic image annotation classifier,SVM-MK,can achieve higher annotating accuracy than SVM with any single kernel and mi-SVM for semantic image annotation.
文摘Soya-bean milk has been a favorite drink for the Chinese people since ancient times. With the development of health consciousness, this low heat, low fat and highly nutritious natural drink has become popular. However, backward production technology and a shortage of marketing channels have prevented people from having easy access to fresh soya-bean milk. The Qingzhou brand automatic household soya-bean milk machine developed by the Qingzhou Trade Company in Beijing is produced
文摘The all position automatic welding machine system is the special welding system for pipeline girth automatic welding on site, which has been widely used in the long distance pipeline construction projects due to the advantages of automatic control for welding parameters at all position, moving speed of bugs and operating. This automatic pipeline welding system has been successfully used in several main pipeline projects in China, and has been approved by the constructors with the benefits of higher quality passing rate, higher welding efficiency and lower labor intensity.
文摘With the rapid development of social economy,the society has entered into a new stage of development,especially in new media under the background of rapid development,makes the importance of news and information to get the comprehensive promotion,and in order to further identify the positive and negative news,should be fully using machine learning methods,based on the emotion to realize the automatic classifying of news,in order to improve the efficiency of news classification.Therefore,the article first makes clear the basic outline of news sentiment classification.Secondly,the specific way of automatic classification of news emotion is deeply analyzed.On the basis of this,the paper puts forward the concrete measures of automatic classification of news emotion by using machine learning.
基金supported by the Auckland Medical Research Foundation,No.1117017(to CPU)
文摘Perinatal hypoxic-ischemic-encephalopathy significantly contributes to neonatal death and life-long disability such as cerebral palsy. Advances in signal processing and machine learning have provided the research community with an opportunity to develop automated real-time identification techniques to detect the signs of hypoxic-ischemic-encephalopathy in larger electroencephalography/amplitude-integrated electroencephalography data sets more easily. This review details the recent achievements, performed by a number of prominent research groups across the world, in the automatic identification and classification of hypoxic-ischemic epileptiform neonatal seizures using advanced signal processing and machine learning techniques. This review also addresses the clinical challenges that current automated techniques face in order to be fully utilized by clinicians, and highlights the importance of upgrading the current clinical bedside sampling frequencies to higher sampling rates in order to provide better hypoxic-ischemic biomarker detection frameworks. Additionally, the article highlights that current clinical automated epileptiform detection strategies for human neonates have been only concerned with seizure detection after the therapeutic latent phase of injury. Whereas recent animal studies have demonstrated that the latent phase of opportunity is critically important for early diagnosis of hypoxic-ischemic-encephalopathy electroencephalography biomarkers and although difficult, detection strategies could utilize biomarkers in the latent phase to also predict the onset of future seizures.
基金financially supported by the National Natural Science Foundation of China,No.61263011,81000554Program in Sun Yat-sen University supported by Fundamental Research Funds for the Central Universities,No.11ykpy07+1 种基金Natural Science Foundation of Guangdong Province,No.S2011010005309Innovation Fund of Xinjiang Medical University,No.XJC201209
文摘The automatic detection and identification of electroencephalogram waves play an important role in the prediction, diagnosis and treatment of epileptic seizures. In this study, a nonlinear dynamics index–approximate entropy and a support vector machine that has strong generalization ability were applied to classify electroencephalogram signals at epileptic interictal and ictal periods. Our aim was to verify whether approximate entropy waves can be effectively applied to the automatic real-time detection of epilepsy in the electroencephalogram, and to explore its generalization ability as a classifier trained using a nonlinear dynamics index. Four patients presenting with partial epileptic seizures were included in this study. They were all diagnosed with neocortex localized epilepsy and epileptic foci were clearly observed by electroencephalogram. The electroencephalogram data form the four involved patients were segmented and the characteristic values of each segment, that is, the approximate entropy, were extracted. The support vector machine classifier was constructed with the approximate entropy extracted from one epileptic case, and then electroencephalogram waves of the other three cases were classified, reaching a 93.33% accuracy rate. Our findings suggest that the use of approximate entropy allows the automatic real-time detection of electroencephalogram data in epileptic cases. The combination of approximate entropy and support vector machines shows good generalization ability for the classification of electroencephalogram signals for epilepsy.
文摘Discovery of useful forecasting rules from observational weather data is an outstanding interesting topic.The traditional methods of acquiring forecasting knowledge are manual analysis and investigation performed by human scientists.This paper presents the experimental results of an automatic machine learning system which derives forecasting rules from real observational data.We tested the system on the two large real data sets from the areas of centra! China and Victoria of Australia.The experimental results show that the forecasting rules discovered by the system are very competitive to human experts.The forecasting accuracy rates are 86.4% and 78% of the two data sets respectively
基金This work is developed with the support of the H2020 RISIS 2 Project(No.824091)and of the“Sapienza”Research Awards No.RM1161550376E40E of 2016 and RM11916B8853C925 of 2019.This article is a largely extended version of Bianchi et al.(2019)presented at the ISSI 2019 Conference held in Rome,2–5 September 2019.
文摘Purpose:The main objective of this work is to show the potentialities of recently developed approaches for automatic knowledge extraction directly from the universities’websites.The information automatically extracted can be potentially updated with a frequency higher than once per year,and be safe from manipulations or misinterpretations.Moreover,this approach allows us flexibility in collecting indicators about the efficiency of universities’websites and their effectiveness in disseminating key contents.These new indicators can complement traditional indicators of scientific research(e.g.number of articles and number of citations)and teaching(e.g.number of students and graduates)by introducing further dimensions to allow new insights for“profiling”the analyzed universities.Design/methodology/approach:Webometrics relies on web mining methods and techniques to perform quantitative analyses of the web.This study implements an advanced application of the webometric approach,exploiting all the three categories of web mining:web content mining;web structure mining;web usage mining.The information to compute our indicators has been extracted from the universities’websites by using web scraping and text mining techniques.The scraped information has been stored in a NoSQL DB according to a semistructured form to allow for retrieving information efficiently by text mining techniques.This provides increased flexibility in the design of new indicators,opening the door to new types of analyses.Some data have also been collected by means of batch interrogations of search engines(Bing,www.bing.com)or from a leading provider of Web analytics(SimilarWeb,http://www.similarweb.com).The information extracted from the Web has been combined with the University structural information taken from the European Tertiary Education Register(https://eter.joanneum.at/#/home),a database collecting information on Higher Education Institutions(HEIs)at European level.All the above was used to perform a clusterization of 79 Italian universities based on structural and digital indicators.Findings:The main findings of this study concern the evaluation of the potential in digitalization of universities,in particular by presenting techniques for the automatic extraction of information from the web to build indicators of quality and impact of universities’websites.These indicators can complement traditional indicators and can be used to identify groups of universities with common features using clustering techniques working with the above indicators.Research limitations:The results reported in this study refers to Italian universities only,but the approach could be extended to other university systems abroad.Practical implications:The approach proposed in this study and its illustration on Italian universities show the usefulness of recently introduced automatic data extraction and web scraping approaches and its practical relevance for characterizing and profiling the activities of universities on the basis of their websites.The approach could be applied to other university systems.Originality/value:This work applies for the first time to university websites some recently introduced techniques for automatic knowledge extraction based on web scraping,optical character recognition and nontrivial text mining operations(Bruni&Bianchi,2020).