期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Visual attention and clustering-based automatic selection of landmarks using single camera 被引量:1
1
作者 CHUHO Yi YONGMIN Shin JUNGWON Cho 《Journal of Central South University》 SCIE EI CAS 2014年第9期3525-3533,共9页
An improved method with better selection capability using a single camera was presented in comparison with previous method. To improve performance, two methods were applied to landmark selection in an unfamiliar indoo... An improved method with better selection capability using a single camera was presented in comparison with previous method. To improve performance, two methods were applied to landmark selection in an unfamiliar indoor environment. First, a modified visual attention method was proposed to automatically select a candidate region as a more useful landmark. In visual attention, candidate landmark regions were selected with different characteristics of ambient color and intensity in the image. Then, the more useful landmarks were selected by combining the candidate regions using clustering. As generally implemented, automatic landmark selection by vision-based simultaneous localization and mapping(SLAM) results in many useless landmarks, because the features of images are distinguished from the surrounding environment but detected repeatedly. These useless landmarks create a serious problem for the SLAM system because they complicate data association. To address this, a method was proposed in which the robot initially collected landmarks through automatic detection while traversing the entire area where the robot performed SLAM, and then, the robot selected only those landmarks that exhibited high rarity through clustering, which enhanced the system performance. Experimental results show that this method of automatic landmark selection results in selection of a high-rarity landmark. The average error of the performance of SLAM decreases 52% compared with conventional methods and the accuracy of data associations increases. 展开更多
关键词 simultaneous localization and mapping automatic landmark selection visual attention CLUSTERING
下载PDF
Partition region-based suppressed fuzzy C-means algorithm 被引量:1
2
作者 Kun Zhang Weiren Kong +4 位作者 Peipei Liu Jiao Shi Yu Lei Jie Zou Min Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第5期996-1008,共13页
Aimed at the problem that the traditional suppressed fuzzy C-means clustering algorithms ignore the real needs of different objects, applying the same suppressed parameter for modifying membership degrees of all the o... Aimed at the problem that the traditional suppressed fuzzy C-means clustering algorithms ignore the real needs of different objects, applying the same suppressed parameter for modifying membership degrees of all the objects, a novel partition region-based suppressed fuzzy C-means clustering algorithm with better capacity of adaptability and robustness is proposed in this paper. The model based on the real needs of different objects is built, making it clear to decide whether to proceed with further determination; in addition, the external user-defined suppressed parameter is automatically selected according to the intrinsic structural characteristic of each dataset, making the proposed method become robust to the fluctuations in the incoming dataset and initial conditions. Experimental results show that the proposed method is more robust than its counterparts and overcomes the weakness of the original suppressed clustering algorithm in most cases. 展开更多
关键词 shadowed set suppressed fuzzy C-means clustering automatically parameter selection soft computing techniques
下载PDF
Three-Dimensional Model Retrieval Using Dynamic Multi-Descriptor Fusion
3
作者 Jau-Ling Shih Chang-Hsing Lee +1 位作者 Yao-Wen Hou Po-Ting Yen 《Journal of Electronic Science and Technology》 CAS CSCD 2017年第2期169-177,共9页
In this paper, we propose a dynamic multi-descriptor fusion (DMDF) approach to improving the retrieval accuracy of 3-dimensional (3D) model retrieval systems. First, an independent retrieval list is generated by u... In this paper, we propose a dynamic multi-descriptor fusion (DMDF) approach to improving the retrieval accuracy of 3-dimensional (3D) model retrieval systems. First, an independent retrieval list is generated by using each individual descriptor. Second, we propose an automatic relevant/irrelevant models selection (ARMS) approach to selecting the relevant and irrelevant 3D models automatically without any user interaction. A weighted distance, in which the weight associated with each individual descriptor is learnt by using the selected relevant and irrelevant models, is used to measure the similarity between two 3D models. Furthermore, a descriptor-dependent adaptive query point movement (AQPM) approach is employed to update every feature vector. This set of new feature vectors is used to index 3D models in the next search process. Four 3D model databases are used to compare the retrieval accuracy of our proposed DMDF approach with several descriptors as well as some well-known information fusion methods. Experimental results have shown that our proposed DMDF approach provides a promising retrieval result and always yields the best retrieval accuracy. 展开更多
关键词 Index Terms--Three-dimensional (3D) model retrieval automatic relevant/irrelevant models selection (ARMS) feature re-weighting (FRW) query point movement (QPM).
下载PDF
Radar HRRP statistical recognition with temporal factor analysis by automatic Bayesian Ying-Yang harmony learning 被引量:2
4
作者 Penghui WANG Lei SHI +3 位作者 Lan DU Hongwei LIU Lei XU Zheng BAO 《Frontiers of Electrical and Electronic Engineering in China》 CSCD 2011年第2期300-317,共18页
Radar high-resolution range profiles(HRRPs)are typical high-dimensional and interdimension dependently distributed data,the statistical modeling of which is a challenging task for HRRP-based target recognition.Supposi... Radar high-resolution range profiles(HRRPs)are typical high-dimensional and interdimension dependently distributed data,the statistical modeling of which is a challenging task for HRRP-based target recognition.Supposing that HRRP samples are independent and jointly Gaussian distributed,a recent work[Du L,Liu H W,Bao Z.IEEE Transactions on Signal Processing,2008,56(5):1931–1944]applied factor analysis(FA)to model HRRP data with a two-phase approach for model selection,which achieved satisfactory recognition performance.The theoretical analysis and experimental results reveal that there exists high temporal correlation among adjacent HRRPs.This paper is thus motivated to model the spatial and temporal structure of HRRP data simultaneously by employing temporal factor analysis(TFA)model.For a limited size of high-dimensional HRRP data,the two-phase approach for parameter learning and model selection suffers from intensive computation burden and deteriorated evaluation.To tackle these problems,this work adopts the Bayesian Ying-Yang(BYY)harmony learning that has automatic model selection ability during parameter learning.Experimental results show stepwise improved recognition and rejection performances from the twophase learning based FA,to the two-phase learning based TFA and to the BYY harmony learning based TFA with automatic model selection.In addition,adding many extra free parameters to the classic FA model and thus becoming even worse in identifiability,the model of a general linear dynamical system is even inferior to the classic FA model. 展开更多
关键词 radar automatic target recognition(RATR) high-resolution range profile(HRRP) temporal factor analysis(TFA) Bayesian Ying-Yang(BYY)harmony learning automatic model selection
原文传递
Automatic Approach to Ontology Evolution Based on Change Impact Comparisons
5
作者 董干 高志鹏 邱雪松 《Tsinghua Science and Technology》 SCIE EI CAS 2010年第6期716-723,共8页
Ontology evolution is the timely adaptation of ontologies to changing requirements, which is becoming more and more important as ontologies become widely used in different fields. This paper shows how to address the p... Ontology evolution is the timely adaptation of ontologies to changing requirements, which is becoming more and more important as ontologies become widely used in different fields. This paper shows how to address the problem of evolving ontologies with less manual case-based reasoning using an automatic selection mechanism. An automatic ontology evolution strategy selection framework is presented that automates the evolution. A minimal change impact algorithm is also developed for the framework. The method is shown to be effective in a case study. 展开更多
关键词 ONTOLOGY ontology evolution automatic ontology evolution strategy selection (AOESS) minima change impact
原文传递
Learning Gaussian mixture with automatic model selection:A comparative study on three Bayesian related approaches
6
作者 Lei SHI Shikui TU Lei XU 《Frontiers of Electrical and Electronic Engineering in China》 CSCD 2011年第2期215-244,共30页
Three Bayesian related approaches,namely,variational Bayesian(VB),minimum message length(MML)and Bayesian Ying-Yang(BYY)harmony learning,have been applied to automatically determining an appropriate number of componen... Three Bayesian related approaches,namely,variational Bayesian(VB),minimum message length(MML)and Bayesian Ying-Yang(BYY)harmony learning,have been applied to automatically determining an appropriate number of components during learning Gaussian mixture model(GMM).This paper aims to provide a comparative investigation on these approaches with not only a Jeffreys prior but also a conjugate Dirichlet-Normal-Wishart(DNW)prior on GMM.In addition to adopting the existing algorithms either directly or with some modifications,the algorithm for VB with Jeffreys prior and the algorithm for BYY with DNW prior are developed in this paper to fill the missing gap.The performances of automatic model selection are evaluated through extensive experiments,with several empirical findings:1)Considering priors merely on the mixing weights,each of three approaches makes biased mistakes,while considering priors on all the parameters of GMM makes each approach reduce its bias and also improve its performance.2)As Jeffreys prior is replaced by the DNW prior,all the three approaches improve their performances.Moreover,Jeffreys prior makes MML slightly better than VB,while the DNW prior makes VB better than MML.3)As the hyperparameters of DNW prior are further optimized by each of its own learning principle,BYY improves its performances while VB and MML deteriorate their performances when there are too many free hyper-parameters.Actually,VB and MML lack a good guide for optimizing the hyper-parameters of DNW prior.4)BYY considerably outperforms both VB and MML for any type of priors and whether hyper-parameters are optimized.Being different from VB and MML that rely on appropriate priors to perform model selection,BYY does not highly depend on the type of priors.It has model selection ability even without priors and performs already very well with Jeffreys prior,and incrementally improves as Jeffreys prior is replaced by the DNW prior.Finally,all algorithms are applied on the Berkeley segmentation database of real world images.Again,BYY considerably outperforms both VB and MML,especially in detecting the objects of interest from a confusing background. 展开更多
关键词 Bayesian Ying-Yang(BYY)harmony learning variational Bayesian(VB) minimum message length(MML) empirical comparison Gaussian mixture model(GMM) automatic model selection Jeffreys prior DIRICHLET joint Normal-Wishart(NW) conjugate distributions marginalized student’s T-distribution
原文传递
Codimensional matrix pairing perspective of BYY harmony learning:hierarchy of bilinear systems,joint decomposition of data-covariance,and applications of network biology
7
作者 Lei XU 《Frontiers of Electrical and Electronic Engineering in China》 CSCD 2011年第1期86-119,共34页
One paper in a preceding issue of this journal has introduced the Bayesian Ying-Yang(BYY)harmony learning from a perspective of problem solving,parameter learning,and model selection.In a complementary role,the paper ... One paper in a preceding issue of this journal has introduced the Bayesian Ying-Yang(BYY)harmony learning from a perspective of problem solving,parameter learning,and model selection.In a complementary role,the paper provides further insights from another perspective that a co-dimensional matrix pair(shortly co-dim matrix pair)forms a building unit and a hierarchy of such building units sets up the BYY system.The BYY harmony learning is re-examined via exploring the nature of a co-dim matrix pair,which leads to improved learning performance with refined model selection criteria and a modified mechanism that coordinates automatic model selection and sparse learning.Besides updating typical algorithms of factor analysis(FA),binary FA(BFA),binary matrix factorization(BMF),and nonnegative matrix factorization(NMF)to share such a mechanism,we are also led to(a)a new parametrization that embeds a de-noise nature to Gaussian mixture and local FA(LFA);(b)an alternative formulation of graph Laplacian based linear manifold learning;(c)a codecomposition of data and covariance for learning regularization and data integration;and(d)a co-dim matrix pair based generalization of temporal FA and state space model.Moreover,with help of a co-dim matrix pair in Hadamard product,we are led to a semi-supervised formation for regression analysis and a semi-blind learning formation for temporal FA and state space model.Furthermore,we address that these advances provide with new tools for network biology studies,including learning transcriptional regulatory,Protein-Protein Interaction network alignment,and network integration. 展开更多
关键词 Bayesian Ying-Yang(BYY)harmony learning automatic model selection bi-linear stochastic system co-dimensional matrix pair sparse learning denoise embedded Gaussian mixture de-noise embedded local factor analysis(LFA) bi-clustering manifold learning temporal factor analysis(TFA) semi-blind learning attributed graph matching generalized linear model(GLM) gene transcriptional regulatory network alignment network integration
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部