Small amount of antimony addition to the Mg-9Al-0.8Zn-0.2Mn(AZ91) alloy results in the obvious increase of tensile strength at both ambient and elevated temperatures. The creep resistance at the temperatures up to 200...Small amount of antimony addition to the Mg-9Al-0.8Zn-0.2Mn(AZ91) alloy results in the obvious increase of tensile strength at both ambient and elevated temperatures. The creep resistance at the temperatures up to 200°C is also improved significantly by antimony addition. Microstructural observations revealed that the addition of antimony modifies morphology of the β(Mg17Al12) phase and causes the formation of some rod-shaped precipitates Mg3Sb2 at grain boundaries. These precipitates have high thermal stability and play an important role for strengthening grain boundaries at elevated temperatures.展开更多
文摘Small amount of antimony addition to the Mg-9Al-0.8Zn-0.2Mn(AZ91) alloy results in the obvious increase of tensile strength at both ambient and elevated temperatures. The creep resistance at the temperatures up to 200°C is also improved significantly by antimony addition. Microstructural observations revealed that the addition of antimony modifies morphology of the β(Mg17Al12) phase and causes the formation of some rod-shaped precipitates Mg3Sb2 at grain boundaries. These precipitates have high thermal stability and play an important role for strengthening grain boundaries at elevated temperatures.