随着汽车主动安全技术的发展,为了进一步推动集成预紧式安全带(Integrated Active and Passive Seatbelt,IAPS)技术的发展和产品的广泛应用,本文研究了IAPS对乘员的防护性能,并进行了稳健性优化设计.首先,本文通过Madymo软件对比分析了I...随着汽车主动安全技术的发展,为了进一步推动集成预紧式安全带(Integrated Active and Passive Seatbelt,IAPS)技术的发展和产品的广泛应用,本文研究了IAPS对乘员的防护性能,并进行了稳健性优化设计.首先,本文通过Madymo软件对比分析了IAPS、传统火药爆炸式安全带(Conventional Pyrotechnic Seatbelt,CPS)和可逆预紧式安全带(Reversible Pretension Seatbelt,RPS)对乘员的防护性能;然后,构建了以乘员的头部损伤(HIC_(15))与胸部压缩量(C_(def))为目标函数的Kriging代理模型,运用多目标粒子群优化算法对IAPS的可逆预紧力、可逆预紧时刻、火药爆炸预紧时刻、安全带伸缩率、安全带限力值及安全气囊的激活时刻6个关键参数进行了匹配优化.并基于iSIGHT多学科优化平台,运用最优拉丁方对优化后的Pareto非劣解集采样,蒙特卡洛模拟方法,满足6σ稳健性设计准则;最后,以乘员损伤风险为依据选择最优解.结果表明,IAPS比CPS和RPS对乘员的防护更具有优越性;此外,多目标6σ稳健性优化设计不仅明显减小了乘员的头部损伤(HIC_(15))与胸部压缩量(C_(def)),而且将IAPS产品质量特性的均值和方差同时降低,使得设计变量远离边界约束.因此,提高了产品质量的一致性和可靠性.展开更多
文摘随着汽车主动安全技术的发展,为了进一步推动集成预紧式安全带(Integrated Active and Passive Seatbelt,IAPS)技术的发展和产品的广泛应用,本文研究了IAPS对乘员的防护性能,并进行了稳健性优化设计.首先,本文通过Madymo软件对比分析了IAPS、传统火药爆炸式安全带(Conventional Pyrotechnic Seatbelt,CPS)和可逆预紧式安全带(Reversible Pretension Seatbelt,RPS)对乘员的防护性能;然后,构建了以乘员的头部损伤(HIC_(15))与胸部压缩量(C_(def))为目标函数的Kriging代理模型,运用多目标粒子群优化算法对IAPS的可逆预紧力、可逆预紧时刻、火药爆炸预紧时刻、安全带伸缩率、安全带限力值及安全气囊的激活时刻6个关键参数进行了匹配优化.并基于iSIGHT多学科优化平台,运用最优拉丁方对优化后的Pareto非劣解集采样,蒙特卡洛模拟方法,满足6σ稳健性设计准则;最后,以乘员损伤风险为依据选择最优解.结果表明,IAPS比CPS和RPS对乘员的防护更具有优越性;此外,多目标6σ稳健性优化设计不仅明显减小了乘员的头部损伤(HIC_(15))与胸部压缩量(C_(def)),而且将IAPS产品质量特性的均值和方差同时降低,使得设计变量远离边界约束.因此,提高了产品质量的一致性和可靠性.