An intelligent emergency service( IES) system is designed for indoor environments based on a wireless sensor and actuator network( WSAN) composed of a gateway, sensor nodes, and a multi-robot system( MRS). If th...An intelligent emergency service( IES) system is designed for indoor environments based on a wireless sensor and actuator network( WSAN) composed of a gateway, sensor nodes, and a multi-robot system( MRS). If the MRS receives accident alarm information, the group of robots will navigate to the accident sites and provide corresponding emergency services.According to the characteristics of the MRS, a distributed consensus formation protocol is designed, which can assure that the multiple robots arrive at the accident site in a specified formation. The prototype emergency service system was designed and implemented, and some relevant simulations and experiments were carried out. The results showthat the MRS can successfully provide emergency lighting and failure node replacement services when accidents happen. The effectiveness of the algorithm and the feasibility of the system are verified.展开更多
In this paper,we investigate IRS-aided user cooperation(UC)scheme in millimeter wave(mmWave)wirelesspowered sensor networks(WPSN),where two single-antenna users are wireless powered in the wireless energy transfer(WET...In this paper,we investigate IRS-aided user cooperation(UC)scheme in millimeter wave(mmWave)wirelesspowered sensor networks(WPSN),where two single-antenna users are wireless powered in the wireless energy transfer(WET)phase first and then cooperatively transmit information to a hybrid access point(AP)in the wireless information transmission(WIT)phase,following which the IRS is deployed to enhance the system performance of theWET andWIT.We maximized the weighted sum-rate problem by jointly optimizing the transmit time slots,power allocations,and the phase shifts of the IRS.Due to the non-convexity of the original problem,a semidefinite programming relaxation-based approach is proposed to convert the formulated problem to a convex optimization framework,which can obtain the optimal global solution.Simulation results demonstrate that the weighted sum throughput of the proposed UC scheme outperforms the non-UC scheme whether equipped with IRS or not.展开更多
A complete study for the implementation of wireless sensor networks in the intelligent building is presented. We carry out some experiments to find out the factors affecting the network performance. Several vital para...A complete study for the implementation of wireless sensor networks in the intelligent building is presented. We carry out some experiments to find out the factors affecting the network performance. Several vital parameters which are related to the link quality are measured before deploying the actual system. And then, we propose an optimized routing protocol based on the analysis of the test data. We evaluate the deployment strategies to ensure the excellent performance of the wireless sensor networks under the real working conditions. And the evaluation results show that the presented system could satisfy the requirements of the applications in the intelligent building.展开更多
In this paper, a novel antenna is proposed for high-temperature testing, which can make the high-temperature pressure characteristics of a wireless passive ceramic pressure sensor demonstrated at up to a temperature o...In this paper, a novel antenna is proposed for high-temperature testing, which can make the high-temperature pressure characteristics of a wireless passive ceramic pressure sensor demonstrated at up to a temperature of 600℃. The design parameters of the antenna are similar to those of the sensor, which will increase the coupling strength between the sensor and testing antenna. The antenna is fabricated in thick film integrated technology, and the properties of the alumina ceramic and silver ensure the feasibility of the antenna in high-temperature environments. The sensor, coupled with the ceramic antenna, is investigated using a high-temperature pressure testing platform. The experimental measurement results show that the pressure signal in a harsh environment can be detected by the frequency diversity of the sensor.展开更多
This paper is concerned with constructing a prototype intelligent home environment for home service robot. In this environment, multi-pattern information can be represented by some intelligent artificial marks. Light-...This paper is concerned with constructing a prototype intelligent home environment for home service robot. In this environment, multi-pattern information can be represented by some intelligent artificial marks. Light-packs service robots can provide reliable and intelligent service by interacting with the environment through the wireless sensor networks. The intelligent space consists the following main components: smart devices with intelligent artificial mark;home server that connects the smart device and maintains the information through wireless sensor network;and the service robot that perform tasks in collaboration with the environment. In this paper, the multi-pattern information model is built, the construction of wireless sensor networks is presented, the smart and agilely home service is introduced. Fi- nally, the future direction of intelligent space system is discussed.展开更多
In the study of intelligent space oriented to home service robot, an important technology is how to construct an communication network which has the characters of high reliability and easy building. In this paper, bas...In the study of intelligent space oriented to home service robot, an important technology is how to construct an communication network which has the characters of high reliability and easy building. In this paper, based on the characteristics of ZigBee protocol, ZigBee technology is used to construct a wireless sensor and actor network. Several intelligent services based on ZigBee wireless sensor and actor network are shown to certify the reliability of this communication network. ZigBee wireless sensor and actor network builds an information bridge for the components in the intelligent space, the spatially distributed devices are connected together seamlessly. With this network, robot can share the mass information in the intelligent space and improve its performance with 'light-packs', devices in intelligent space, such as lamp, curtain can be controlled autonomously.展开更多
Wireless sensor and actuator network is the key technology of service robot intelligent space. This paper is concerned with design and implementation of a ZigBee based wireless sensor and actuator network (hereinafter...Wireless sensor and actuator network is the key technology of service robot intelligent space. This paper is concerned with design and implementation of a ZigBee based wireless sensor and actuator network (hereinafter referred to as ZWSAN), which has been applied in our service robot intelligent space successfully. Firstly, a simplified ZigBee stack applied to ZWSAN is proposed and the primitives of the stack are illustrated after a short overview of ZigBee protocols. Then the implementation of hardware module and software stack is introduced in detail as well as several representative devices integrated into ZWSAN, including environmental sensors for environmental perception, home devices controllers for device control, embedded speech recognition module for speech control, IMU module for abnormal behaviors detection and laser robot control for service robot navigation. An application example is described to demonstrate how the devices in ZWSAN to provide service cooperatively. Finally, we conclude this paper and discuss the future directions.展开更多
To quick customize and develop intelligent campus internet of things (ICIOT) system more efficiently, in this paper an approach based on runtime model to managing intelligent campus wireless sensor networks is propose...To quick customize and develop intelligent campus internet of things (ICIOT) system more efficiently, in this paper an approach based on runtime model to managing intelligent campus wireless sensor networks is proposed. Firstly, manageability of intelligent campus wireless sensors is abstracted as runtime models which automatically and immediately propagate any observable runtime changes of target resources to corresponding architecture models. Then, a composite model of intelligent campus wireless sensors is constructed through merging their runtime models in order to manage different kinds of devices in a unified way. Finally, a customized model is constructed according to the personalized management requirement and the synchronization between the customized model and the composite model is ensured through model transformation. Thus, all the management tasks can be carried through executing operating programs on the customized model. In the part of the teaching area schools conducted experiments and compared with the traditional method, this method can be more effective management of campus facilities, more energy efficient and orderly, which can reach a 16.7% energy saving.展开更多
Recently, Wireless Sensor Network (WSN) has been widely applied in many fields. In this paper, we design and implement a WSN-based Electronic Intelligent Tag System (EITS) to provide intelligent management of the mode...Recently, Wireless Sensor Network (WSN) has been widely applied in many fields. In this paper, we design and implement a WSN-based Electronic Intelligent Tag System (EITS) to provide intelligent management of the modern supermarkets. As a main transceiver, nRF24L01+ wireless module is used in this system, which will make it possible to achieve low-power and low-cost for EITS. This system fully embodies the advantages and characteristics of WSN. This paper will introduce the system architecture, hardware structure and software design in details;and put forward a specific solution. Finally, we achieve the intelligent management of the mall based on wireless sensor network technology.展开更多
Wireless Sensor Networks (WSNs) are mainly deployed for data acquisition, thus, the network performance can be passively measured by exploiting whether application data from various sensor nodes reach the sink. In thi...Wireless Sensor Networks (WSNs) are mainly deployed for data acquisition, thus, the network performance can be passively measured by exploiting whether application data from various sensor nodes reach the sink. In this paper, therefore, we take into account the unique data aggregation communication paradigm of WSNs and model the problem of link loss rates inference as a Maximum-Likelihood Estimation problem. And we propose an inference algorithm based on the standard Expectation-Maximization (EM) techniques. Our algorithm is applicable not only to periodic data collection scenarios but to event detection scenarios. Finally, we validate the algorithm through simulations and it exhibits good performance and scalability.展开更多
[Objective] This study was to design an intelligent greenhouse real-time monitoring system based on the core technology of Internet of Things in order to meet the needs of agricultural informatization and intellectual...[Objective] This study was to design an intelligent greenhouse real-time monitoring system based on the core technology of Internet of Things in order to meet the needs of agricultural informatization and intellectualization. [Method] Based on the application characteristics of Wireless Sensor Network (WSN), the intelligent greenhouse monitoring system was designed. And for the incompleteness strategy of load balancing in the Low-Energy Adaptive Clustering Hierarchy (LEACH), a Real- time Threshold Routing Algorithm (RTRA) was proposed. [Result] The performance of network lifetime and network delay of RTRA were tested in MATLAB and found that, within the same testing environment, RTRA can save nodes energy consumption, prolong network lifetime, and had better real-time performance than LEACH. The al- gorithm satisfies the crops' requirements on real-time and energy efficiency in the greenhouse system. [Conclusion] For the good performance on real-time, the de- signed intelligent greenhouse real-time monitoring system laid the foundation for the research and development of agricultural informatization and intellectualization.展开更多
A wireless sensor network(WSN)consists of several tiny sensor nodes to monitor,collect,and transmit the physical information from an environment through the wireless channel.The node failure is considered as one of th...A wireless sensor network(WSN)consists of several tiny sensor nodes to monitor,collect,and transmit the physical information from an environment through the wireless channel.The node failure is considered as one of the main issues in the WSN which creates higher packet drop,delay,and energy consumption during the communication.Although the node failure occurred mostly due to persistent energy exhaustion during transmission of data packets.In this paper,Artificial Neural Network(ANN)based Node Failure Detection(NFD)is developed with cognitive radio for detecting the location of the node failure.The ad hoc on-demand distance vector(AODV)routing protocol is used for transmitting the data from the source node to the base station.Moreover,the Mahalanobis distance is used for detecting an adjacent node to the node failure which is used to create the routing path without any node failure.The performance of the proposed ANN-NFD method is analysed in terms of throughput,delivery rate,number of nodes alive,drop rate,end to end delay,energy consumption,and overhead ratio.Furthermore,the performance of the ANN-NFD method is evaluated with the header to base station and base station to header(H2B2H)protocol.The packet delivery rate of the ANN-NFD method is 0.92 for 150 nodes that are high when compared to the H2B2H protocol.Hence,the ANN-NFD method provides data consistency during data transmission under node and battery failure.展开更多
Wireless sensor networks (WSNs) are considered the backbone ofthe Internet of Things (IoT), which enables sensor nodes (SNs) to achieveapplications similarly to human intelligence. However, integrating a WSNwith the I...Wireless sensor networks (WSNs) are considered the backbone ofthe Internet of Things (IoT), which enables sensor nodes (SNs) to achieveapplications similarly to human intelligence. However, integrating a WSNwith the IoT is challenging and causes issues that require careful exploration.Prolonging the lifetime of a network through appropriately utilising energyconsumption is among the essential challenges due to the limited resourcesof SNs. Thus, recent research has examined mobile sinks (MSs), which havebeen introduced to improve the overall efficiency of WSNs. MSs bear theburden of data collection instead of consuming energy at the routeing bySNs. In a network, some areas generate more data through SNs that containfrequent, urgent messages. These messages carry sensitive data that must bedelivered immediately to user applications. Collecting such messages via MSs,especially on a large scale, increases delays, which are not tolerable in some realapplications. This issue has not been studied much. Thus, the present studyutilises the advantages of the priority parameter to concentrate on these areasand proposes a new model named ‘energy efficient path planning of MS-basedarea priority’ (EEPP-BAP). This method involves non-urgent and urgentmessages. It is comprised of four procedures. Initially, after SNs are distributedrandomly in a wide monitoring field, the monitoring field is partitionedinto equal zones according to priority, either differently or equally. Next isclustering based on the cluster head (CH) selected to perform the particleswarm optimisation algorithm (PSO). Then, the MS moves first to the zoneswith higher priority and less distance to perform the brain storm optimisationalgorithm. Finally, for urgent messages from the other zones at which theMS continues, the proposed approach establishes a routeing technique usingmulti-hop communication based on the MS position and using PSO. The proposed solution is aimed at delivering urgent messages to MSs free of latencyand with minimal packet loss. The simulation results proved that the EEPPBAP method can improve network performance compared with other modelsbased on different parameters that have been used to construct the controlledmovement of MSs in large-scale environments involving urgent messages. Theproposed method increased the average lifetime of SNs to 206.6% on average,reduced the average end-to-end delay to 7.1%, and increased the averagepacket delivery ratio to 36.9%.展开更多
The deployment of sensor nodes is an important aspect in mobile wireless sensor networks for increasing network performance.The longevity of the networks is mostly determined by the proportion of energy consumed and t...The deployment of sensor nodes is an important aspect in mobile wireless sensor networks for increasing network performance.The longevity of the networks is mostly determined by the proportion of energy consumed and the sensor nodes’access network.The optimal or ideal positioning of sensors improves the portable sensor networks effectiveness.Coverage and energy usage are mostly determined by successful sensor placement strategies.Nature-inspired algorithms are the most effective solution for short sensor lifetime.The primary objective of work is to conduct a comparative analysis of nature-inspired optimization for wireless sensor networks(WSNs’)maximum network coverage.Moreover,it identifies quantity of installed sensor nodes for the given area.Superiority of algorithm has been identified based on value of optimized energy.The first half of the paper’s literature on nature-inspired algorithms is discussed.Later six metaheuristics algorithms(Grey wolf,Ant lion,Dragonfly,Whale,Moth flame,Sine cosine optimizer)are compared for optimal coverage of WSNs.The simulation outcomes confirm that whale opti-mization algorithm(WOA)gives optimized Energy with improved network coverage with the least number of nodes.This comparison will be helpful for researchers who will use WSNs in their applications.展开更多
Rapid developments of mobile technologies, data acquisition and big data analytics, and their integration with critical application domains such as transportation systems have the potential to produce more efficient, ...Rapid developments of mobile technologies, data acquisition and big data analytics, and their integration with critical application domains such as transportation systems have the potential to produce more efficient, real-time, intelligent and safe transportation infrastructure. To increase the quality of transportation services, wireless sensor networks, mobile phones, crowd sourcing, RFID and Bluetooth technologies are being used. We surveyed innovations that were transformed from ideas in research labs into commercial systems in practical use. In this paper, we present some innovative mobile technologies, services and platforms that are being used in modern transportation applications including traffic data acquisition, traffic management and control, route optimizations, infrastructure redesign, road safety and enhancing user experience.展开更多
Established on the Intel Multi-Core Embedded platform, using 802.11 Wireless Network protocols as the communication medium, combining with Radio Frequency-Communication and Ultrasonic Ranging, imple-ment a mobile term...Established on the Intel Multi-Core Embedded platform, using 802.11 Wireless Network protocols as the communication medium, combining with Radio Frequency-Communication and Ultrasonic Ranging, imple-ment a mobile terminal system in an intellectualized building. It can provide its holder such functions: 1) Accurate Positioning 2) Intelligent Navigation 3) Video Monitoring 4) Wireless Communication. The inno-vative point for this paper is to apply the multi-core computing on the embedded system to promote its com-puting speed and give a real-time performance and apply this system into the indoor environment for the purpose of emergent event or rescuing.展开更多
Wireless sensor actor networks are composed of sensor and actor nodes wherein sensor nodes outnumber resource-rich actor nodes. Sensor nodes gather information and send them to a central node (sink) and/or to actors f...Wireless sensor actor networks are composed of sensor and actor nodes wherein sensor nodes outnumber resource-rich actor nodes. Sensor nodes gather information and send them to a central node (sink) and/or to actors for proper actions. The short lifetime of energy-constrained sensor nodes can endanger the proper operation of the whole network when they run out of power and partition the network. Energy harvesting as well as minimizing sensor energy consumption had already been studied. We propose a different approach for recharging sensor nodes by mobile actor nodes that use only local information. Sensor nodes send their energy status along with their sensed information to actors in their coverage. Based on this energy information, actors coordinate implicitly to decide on the timings and the ordering of recharges of low energy sensor nodes. Coordination between actors is achieved by swarm intelligence and the replenishment continues during local learning of actor nodes. The number of actors required to keep up such networks is identified through simulation using VisualSense. It is shown that defining the appropriate number of actor nodes is critical to the success of recharging strategies in prolonging the network lifetime.展开更多
During this research we spot several key issues concerning WSN design process and how to introduce intelligence in the motes. Due to the nature of these networks, debugging after deployment is unrealistic, thus an eff...During this research we spot several key issues concerning WSN design process and how to introduce intelligence in the motes. Due to the nature of these networks, debugging after deployment is unrealistic, thus an efficient testing method is required. WSN simulators perform the task, but still code implementing mote sensing and RF behaviour consists of layered and/or interacting protocols that for the sake of designing accuracy are tested working as a whole, running on specific hardware. Simulators that provide cross layer simulation and hardware emulation options may be regarded as the last milestone of the WSN design process. Especially mechanisms for introducing intelligence into the WSN decision making process but in the simulation level is an important aspect not tackled so far in the literature at all. The herein proposed multi-agent simulation architecture aims at designing a novel WSN simulation system independent of specific hardware platforms but taking into account all hardware entities and events for testing and analysing the behaviour of a realistic WSN system. Moreover, the design herein outlined involves the basic mechanisms, with regards to memory and data management, towards Prolog interpreter implementation in the simulation level.展开更多
This paper describes a novel energy-aware multi-hop cluster-based fault-tolerant load balancing hierarchical routing protocol for a self-organizing wireless sensor network (WSN), which takes into account the broadcast...This paper describes a novel energy-aware multi-hop cluster-based fault-tolerant load balancing hierarchical routing protocol for a self-organizing wireless sensor network (WSN), which takes into account the broadcast nature of radio. The main idea is using hierarchical fuzzy soft clusters enabling non-exclusive overlapping clusters, thus allowing partial multiple membership of a node to more than one cluster, whereby for each cluster the clusterhead (CH) takes in charge intra-cluster issues of aggregating the information from nodes members, and then collaborate and coordinate with its related overlapping area heads (OAHs), which are elected heuristically to ensure inter-clusters communication. This communication is implemented using an extended version of time-division multiple access (TDMA) allowing the allocation of several slots for a given node, and alternating the role of the clusterhead and its associated overlapping area heads. Each cluster head relays information to overlapping area heads which in turn each relays it to other associated cluster heads in related clusters, thus the information propagates gradually until it reaches the sink in a multi-hop fashion.展开更多
The modern basic building blocks of a control system consist of data acquisition,dispensation of data by the system operators and the remote control of system devices.However,the physical controls,technical exam...The modern basic building blocks of a control system consist of data acquisition,dispensation of data by the system operators and the remote control of system devices.However,the physical controls,technical examinations and deductions were originally implemented to aid the process and control of power system design.The complexity of the power system keeps increasing due the technical improvements,diversity and dynamic requirements.Artificial intelligence is the science of automating intelligent activities presently attainable by individuals.Intelligent system techniques may be of excessive benefit in the application of area power system controls.Whereas smart grid can be measured as a modern electric power grid structure for better productivity and dependability via automatic control,excessive power converters,modern communications setup,sensing and metering equipment,and modern energy management techniques established on the optimization of demand,energy and network accessibility,and so on.The enormous depiction of the entire transmission grid,in the perspective of smart grids,is quite unclear;and in Nigeria no studies have been put on ground in order for the existing network to be turn into a smart grid.In this research work emphasis is placed on generation and transmission stations;power optimization using artificial intelligent techniques and wireless sensor networks for power control management system.展开更多
基金The National Natural Science Foundation of China(No.61375076)the Research&Innovation Program for Graduate Student in Universities of Jiangsu Province(No.KYLX_0108)+1 种基金the Scientific Research Foundation of Graduate School of Southeast University(No.YBJJ1423)Jiangsu Planned Projects for Postdoctoral Research Funds(No.1302064B)
文摘An intelligent emergency service( IES) system is designed for indoor environments based on a wireless sensor and actuator network( WSAN) composed of a gateway, sensor nodes, and a multi-robot system( MRS). If the MRS receives accident alarm information, the group of robots will navigate to the accident sites and provide corresponding emergency services.According to the characteristics of the MRS, a distributed consensus formation protocol is designed, which can assure that the multiple robots arrive at the accident site in a specified formation. The prototype emergency service system was designed and implemented, and some relevant simulations and experiments were carried out. The results showthat the MRS can successfully provide emergency lighting and failure node replacement services when accidents happen. The effectiveness of the algorithm and the feasibility of the system are verified.
基金This work was supported in part by the open research fund of National Mobile Communications Research Laboratory,Southeast University(No.2023D11)in part by Sponsored by program for Science&Technology Innovation Talents in Universities of Henan Province(23HASTIT019)+2 种基金in part by Natural Science Foundation of Henan Province(20232300421097)in part by the project funded by China Postdoctoral Science Foundation(2020M682345)in part by the Henan Postdoctoral Foundation(202001015).
文摘In this paper,we investigate IRS-aided user cooperation(UC)scheme in millimeter wave(mmWave)wirelesspowered sensor networks(WPSN),where two single-antenna users are wireless powered in the wireless energy transfer(WET)phase first and then cooperatively transmit information to a hybrid access point(AP)in the wireless information transmission(WIT)phase,following which the IRS is deployed to enhance the system performance of theWET andWIT.We maximized the weighted sum-rate problem by jointly optimizing the transmit time slots,power allocations,and the phase shifts of the IRS.Due to the non-convexity of the original problem,a semidefinite programming relaxation-based approach is proposed to convert the formulated problem to a convex optimization framework,which can obtain the optimal global solution.Simulation results demonstrate that the weighted sum throughput of the proposed UC scheme outperforms the non-UC scheme whether equipped with IRS or not.
基金supported by National Natural Science Foundation of China under Grant No.60802016, 60972010by China Next Generation Internet (CNGI) project under Grant No.CNGI-09-03-05
文摘A complete study for the implementation of wireless sensor networks in the intelligent building is presented. We carry out some experiments to find out the factors affecting the network performance. Several vital parameters which are related to the link quality are measured before deploying the actual system. And then, we propose an optimized routing protocol based on the analysis of the test data. We evaluate the deployment strategies to ensure the excellent performance of the wireless sensor networks under the real working conditions. And the evaluation results show that the presented system could satisfy the requirements of the applications in the intelligent building.
基金Project supported by the National Natural Science Foundation for Distinguished Young Scholars,China(Grant No.51425505)the National Natural Science Foundation of China(Grant No.61471324)+1 种基金the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi Province,China(Grant No.2013-077)the Graduate Students Outstanding Innovation Project of Shanxi Province,China(Grant No.20143020)
文摘In this paper, a novel antenna is proposed for high-temperature testing, which can make the high-temperature pressure characteristics of a wireless passive ceramic pressure sensor demonstrated at up to a temperature of 600℃. The design parameters of the antenna are similar to those of the sensor, which will increase the coupling strength between the sensor and testing antenna. The antenna is fabricated in thick film integrated technology, and the properties of the alumina ceramic and silver ensure the feasibility of the antenna in high-temperature environments. The sensor, coupled with the ceramic antenna, is investigated using a high-temperature pressure testing platform. The experimental measurement results show that the pressure signal in a harsh environment can be detected by the frequency diversity of the sensor.
文摘This paper is concerned with constructing a prototype intelligent home environment for home service robot. In this environment, multi-pattern information can be represented by some intelligent artificial marks. Light-packs service robots can provide reliable and intelligent service by interacting with the environment through the wireless sensor networks. The intelligent space consists the following main components: smart devices with intelligent artificial mark;home server that connects the smart device and maintains the information through wireless sensor network;and the service robot that perform tasks in collaboration with the environment. In this paper, the multi-pattern information model is built, the construction of wireless sensor networks is presented, the smart and agilely home service is introduced. Fi- nally, the future direction of intelligent space system is discussed.
文摘In the study of intelligent space oriented to home service robot, an important technology is how to construct an communication network which has the characters of high reliability and easy building. In this paper, based on the characteristics of ZigBee protocol, ZigBee technology is used to construct a wireless sensor and actor network. Several intelligent services based on ZigBee wireless sensor and actor network are shown to certify the reliability of this communication network. ZigBee wireless sensor and actor network builds an information bridge for the components in the intelligent space, the spatially distributed devices are connected together seamlessly. With this network, robot can share the mass information in the intelligent space and improve its performance with 'light-packs', devices in intelligent space, such as lamp, curtain can be controlled autonomously.
文摘Wireless sensor and actuator network is the key technology of service robot intelligent space. This paper is concerned with design and implementation of a ZigBee based wireless sensor and actuator network (hereinafter referred to as ZWSAN), which has been applied in our service robot intelligent space successfully. Firstly, a simplified ZigBee stack applied to ZWSAN is proposed and the primitives of the stack are illustrated after a short overview of ZigBee protocols. Then the implementation of hardware module and software stack is introduced in detail as well as several representative devices integrated into ZWSAN, including environmental sensors for environmental perception, home devices controllers for device control, embedded speech recognition module for speech control, IMU module for abnormal behaviors detection and laser robot control for service robot navigation. An application example is described to demonstrate how the devices in ZWSAN to provide service cooperatively. Finally, we conclude this paper and discuss the future directions.
文摘To quick customize and develop intelligent campus internet of things (ICIOT) system more efficiently, in this paper an approach based on runtime model to managing intelligent campus wireless sensor networks is proposed. Firstly, manageability of intelligent campus wireless sensors is abstracted as runtime models which automatically and immediately propagate any observable runtime changes of target resources to corresponding architecture models. Then, a composite model of intelligent campus wireless sensors is constructed through merging their runtime models in order to manage different kinds of devices in a unified way. Finally, a customized model is constructed according to the personalized management requirement and the synchronization between the customized model and the composite model is ensured through model transformation. Thus, all the management tasks can be carried through executing operating programs on the customized model. In the part of the teaching area schools conducted experiments and compared with the traditional method, this method can be more effective management of campus facilities, more energy efficient and orderly, which can reach a 16.7% energy saving.
文摘Recently, Wireless Sensor Network (WSN) has been widely applied in many fields. In this paper, we design and implement a WSN-based Electronic Intelligent Tag System (EITS) to provide intelligent management of the modern supermarkets. As a main transceiver, nRF24L01+ wireless module is used in this system, which will make it possible to achieve low-power and low-cost for EITS. This system fully embodies the advantages and characteristics of WSN. This paper will introduce the system architecture, hardware structure and software design in details;and put forward a specific solution. Finally, we achieve the intelligent management of the mall based on wireless sensor network technology.
文摘Wireless Sensor Networks (WSNs) are mainly deployed for data acquisition, thus, the network performance can be passively measured by exploiting whether application data from various sensor nodes reach the sink. In this paper, therefore, we take into account the unique data aggregation communication paradigm of WSNs and model the problem of link loss rates inference as a Maximum-Likelihood Estimation problem. And we propose an inference algorithm based on the standard Expectation-Maximization (EM) techniques. Our algorithm is applicable not only to periodic data collection scenarios but to event detection scenarios. Finally, we validate the algorithm through simulations and it exhibits good performance and scalability.
基金Supported by the Science and Technology Surface Project of Yunnan Province(2010ZC142)the Doctoral Foundation of Dali University(KYBS201015),the Scientific Research Program for College Students of Dali University~~
文摘[Objective] This study was to design an intelligent greenhouse real-time monitoring system based on the core technology of Internet of Things in order to meet the needs of agricultural informatization and intellectualization. [Method] Based on the application characteristics of Wireless Sensor Network (WSN), the intelligent greenhouse monitoring system was designed. And for the incompleteness strategy of load balancing in the Low-Energy Adaptive Clustering Hierarchy (LEACH), a Real- time Threshold Routing Algorithm (RTRA) was proposed. [Result] The performance of network lifetime and network delay of RTRA were tested in MATLAB and found that, within the same testing environment, RTRA can save nodes energy consumption, prolong network lifetime, and had better real-time performance than LEACH. The al- gorithm satisfies the crops' requirements on real-time and energy efficiency in the greenhouse system. [Conclusion] For the good performance on real-time, the de- signed intelligent greenhouse real-time monitoring system laid the foundation for the research and development of agricultural informatization and intellectualization.
文摘A wireless sensor network(WSN)consists of several tiny sensor nodes to monitor,collect,and transmit the physical information from an environment through the wireless channel.The node failure is considered as one of the main issues in the WSN which creates higher packet drop,delay,and energy consumption during the communication.Although the node failure occurred mostly due to persistent energy exhaustion during transmission of data packets.In this paper,Artificial Neural Network(ANN)based Node Failure Detection(NFD)is developed with cognitive radio for detecting the location of the node failure.The ad hoc on-demand distance vector(AODV)routing protocol is used for transmitting the data from the source node to the base station.Moreover,the Mahalanobis distance is used for detecting an adjacent node to the node failure which is used to create the routing path without any node failure.The performance of the proposed ANN-NFD method is analysed in terms of throughput,delivery rate,number of nodes alive,drop rate,end to end delay,energy consumption,and overhead ratio.Furthermore,the performance of the ANN-NFD method is evaluated with the header to base station and base station to header(H2B2H)protocol.The packet delivery rate of the ANN-NFD method is 0.92 for 150 nodes that are high when compared to the H2B2H protocol.Hence,the ANN-NFD method provides data consistency during data transmission under node and battery failure.
文摘Wireless sensor networks (WSNs) are considered the backbone ofthe Internet of Things (IoT), which enables sensor nodes (SNs) to achieveapplications similarly to human intelligence. However, integrating a WSNwith the IoT is challenging and causes issues that require careful exploration.Prolonging the lifetime of a network through appropriately utilising energyconsumption is among the essential challenges due to the limited resourcesof SNs. Thus, recent research has examined mobile sinks (MSs), which havebeen introduced to improve the overall efficiency of WSNs. MSs bear theburden of data collection instead of consuming energy at the routeing bySNs. In a network, some areas generate more data through SNs that containfrequent, urgent messages. These messages carry sensitive data that must bedelivered immediately to user applications. Collecting such messages via MSs,especially on a large scale, increases delays, which are not tolerable in some realapplications. This issue has not been studied much. Thus, the present studyutilises the advantages of the priority parameter to concentrate on these areasand proposes a new model named ‘energy efficient path planning of MS-basedarea priority’ (EEPP-BAP). This method involves non-urgent and urgentmessages. It is comprised of four procedures. Initially, after SNs are distributedrandomly in a wide monitoring field, the monitoring field is partitionedinto equal zones according to priority, either differently or equally. Next isclustering based on the cluster head (CH) selected to perform the particleswarm optimisation algorithm (PSO). Then, the MS moves first to the zoneswith higher priority and less distance to perform the brain storm optimisationalgorithm. Finally, for urgent messages from the other zones at which theMS continues, the proposed approach establishes a routeing technique usingmulti-hop communication based on the MS position and using PSO. The proposed solution is aimed at delivering urgent messages to MSs free of latencyand with minimal packet loss. The simulation results proved that the EEPPBAP method can improve network performance compared with other modelsbased on different parameters that have been used to construct the controlledmovement of MSs in large-scale environments involving urgent messages. Theproposed method increased the average lifetime of SNs to 206.6% on average,reduced the average end-to-end delay to 7.1%, and increased the averagepacket delivery ratio to 36.9%.
文摘The deployment of sensor nodes is an important aspect in mobile wireless sensor networks for increasing network performance.The longevity of the networks is mostly determined by the proportion of energy consumed and the sensor nodes’access network.The optimal or ideal positioning of sensors improves the portable sensor networks effectiveness.Coverage and energy usage are mostly determined by successful sensor placement strategies.Nature-inspired algorithms are the most effective solution for short sensor lifetime.The primary objective of work is to conduct a comparative analysis of nature-inspired optimization for wireless sensor networks(WSNs’)maximum network coverage.Moreover,it identifies quantity of installed sensor nodes for the given area.Superiority of algorithm has been identified based on value of optimized energy.The first half of the paper’s literature on nature-inspired algorithms is discussed.Later six metaheuristics algorithms(Grey wolf,Ant lion,Dragonfly,Whale,Moth flame,Sine cosine optimizer)are compared for optimal coverage of WSNs.The simulation outcomes confirm that whale opti-mization algorithm(WOA)gives optimized Energy with improved network coverage with the least number of nodes.This comparison will be helpful for researchers who will use WSNs in their applications.
文摘Rapid developments of mobile technologies, data acquisition and big data analytics, and their integration with critical application domains such as transportation systems have the potential to produce more efficient, real-time, intelligent and safe transportation infrastructure. To increase the quality of transportation services, wireless sensor networks, mobile phones, crowd sourcing, RFID and Bluetooth technologies are being used. We surveyed innovations that were transformed from ideas in research labs into commercial systems in practical use. In this paper, we present some innovative mobile technologies, services and platforms that are being used in modern transportation applications including traffic data acquisition, traffic management and control, route optimizations, infrastructure redesign, road safety and enhancing user experience.
文摘Established on the Intel Multi-Core Embedded platform, using 802.11 Wireless Network protocols as the communication medium, combining with Radio Frequency-Communication and Ultrasonic Ranging, imple-ment a mobile terminal system in an intellectualized building. It can provide its holder such functions: 1) Accurate Positioning 2) Intelligent Navigation 3) Video Monitoring 4) Wireless Communication. The inno-vative point for this paper is to apply the multi-core computing on the embedded system to promote its com-puting speed and give a real-time performance and apply this system into the indoor environment for the purpose of emergent event or rescuing.
文摘Wireless sensor actor networks are composed of sensor and actor nodes wherein sensor nodes outnumber resource-rich actor nodes. Sensor nodes gather information and send them to a central node (sink) and/or to actors for proper actions. The short lifetime of energy-constrained sensor nodes can endanger the proper operation of the whole network when they run out of power and partition the network. Energy harvesting as well as minimizing sensor energy consumption had already been studied. We propose a different approach for recharging sensor nodes by mobile actor nodes that use only local information. Sensor nodes send their energy status along with their sensed information to actors in their coverage. Based on this energy information, actors coordinate implicitly to decide on the timings and the ordering of recharges of low energy sensor nodes. Coordination between actors is achieved by swarm intelligence and the replenishment continues during local learning of actor nodes. The number of actors required to keep up such networks is identified through simulation using VisualSense. It is shown that defining the appropriate number of actor nodes is critical to the success of recharging strategies in prolonging the network lifetime.
文摘During this research we spot several key issues concerning WSN design process and how to introduce intelligence in the motes. Due to the nature of these networks, debugging after deployment is unrealistic, thus an efficient testing method is required. WSN simulators perform the task, but still code implementing mote sensing and RF behaviour consists of layered and/or interacting protocols that for the sake of designing accuracy are tested working as a whole, running on specific hardware. Simulators that provide cross layer simulation and hardware emulation options may be regarded as the last milestone of the WSN design process. Especially mechanisms for introducing intelligence into the WSN decision making process but in the simulation level is an important aspect not tackled so far in the literature at all. The herein proposed multi-agent simulation architecture aims at designing a novel WSN simulation system independent of specific hardware platforms but taking into account all hardware entities and events for testing and analysing the behaviour of a realistic WSN system. Moreover, the design herein outlined involves the basic mechanisms, with regards to memory and data management, towards Prolog interpreter implementation in the simulation level.
文摘This paper describes a novel energy-aware multi-hop cluster-based fault-tolerant load balancing hierarchical routing protocol for a self-organizing wireless sensor network (WSN), which takes into account the broadcast nature of radio. The main idea is using hierarchical fuzzy soft clusters enabling non-exclusive overlapping clusters, thus allowing partial multiple membership of a node to more than one cluster, whereby for each cluster the clusterhead (CH) takes in charge intra-cluster issues of aggregating the information from nodes members, and then collaborate and coordinate with its related overlapping area heads (OAHs), which are elected heuristically to ensure inter-clusters communication. This communication is implemented using an extended version of time-division multiple access (TDMA) allowing the allocation of several slots for a given node, and alternating the role of the clusterhead and its associated overlapping area heads. Each cluster head relays information to overlapping area heads which in turn each relays it to other associated cluster heads in related clusters, thus the information propagates gradually until it reaches the sink in a multi-hop fashion.
文摘The modern basic building blocks of a control system consist of data acquisition,dispensation of data by the system operators and the remote control of system devices.However,the physical controls,technical examinations and deductions were originally implemented to aid the process and control of power system design.The complexity of the power system keeps increasing due the technical improvements,diversity and dynamic requirements.Artificial intelligence is the science of automating intelligent activities presently attainable by individuals.Intelligent system techniques may be of excessive benefit in the application of area power system controls.Whereas smart grid can be measured as a modern electric power grid structure for better productivity and dependability via automatic control,excessive power converters,modern communications setup,sensing and metering equipment,and modern energy management techniques established on the optimization of demand,energy and network accessibility,and so on.The enormous depiction of the entire transmission grid,in the perspective of smart grids,is quite unclear;and in Nigeria no studies have been put on ground in order for the existing network to be turn into a smart grid.In this research work emphasis is placed on generation and transmission stations;power optimization using artificial intelligent techniques and wireless sensor networks for power control management system.