In order to effectively reduce energy consumption and increase range mile,new energy vehicles represented by Tesla have greatly aroused the application of integrated magnesium(Mg)alloy die casting technology in automo...In order to effectively reduce energy consumption and increase range mile,new energy vehicles represented by Tesla have greatly aroused the application of integrated magnesium(Mg)alloy die casting technology in automobiles.Previously,the application of Mg alloys in automobiles,especially in automotive cockpit components,is quite extensive,while it has almost disappeared for a period of time due to its relatively high cost,causing a certain degree of information loss in the application technology of Mg alloy parts in automobiles.The rapid development of automotive technology has led to a higher requirement for the automotive components compared with those traditional one.Therefore,whatever the components themselves,or the Mg alloy materials and die casting process have to face an increasing challenge,needing to be upgraded.In addition,owing to its high integration characteristics,the application of Mg alloy die casting technology in large-sized and thin-walled automotive parts has inherent advantages and needs to be expanded urgently.Indeed,it necessitates exploring advance Mg alloys and new product structures and optimizing die casting processes.This article summarizes and analyzes the development status of thin-walled and large-sized die casting Mg alloy parts in passenger car cockpit and corresponding material selection methods,die casting processes as well as mold design techniques.Furthermore,this work will aid researchers in establishing a comprehensive understanding of the manufacture of thin-walled and large-sized die casting Mg alloy parts in automobile cockpit.It will also assist them in developing new Mg alloys with improved comprehensive performance and new processes to meet the high requirements for die casting automotive components.展开更多
This study explored the synergistic interaction of sewage sludge(SS)and automotive paint sludge(PS)during co-pyrolysis for the optimized treatment of sewage sludge in cement kiln systems,utilizing thermogravimetric an...This study explored the synergistic interaction of sewage sludge(SS)and automotive paint sludge(PS)during co-pyrolysis for the optimized treatment of sewage sludge in cement kiln systems,utilizing thermogravimetric analysis(TGA)and thermogravimetric-mass spectrometry(TGA-MS).The result reveals the coexisting synergistic and antagonistic effects in the co-pyrolysis of SS/PS.The synergistic effect arises from hydrogen free radicals in SS and catalytic components in PS,while the main source of the antagonistic effect is that,during the mechanical mixing process,the SS/PS is converted from the particulate form into a dough-like rubbery which contributes to the film-forming effect,hindering the volatilization of volatile components.SS/PS co-pyrolysis reduces the yielding of tar production while increasing coke and gas.This study will provide some in-depth insights into the co-pyrolysis of SS/PS,and offer theoretical support for the subsequent research on the collaborative disposal processes in cement kilns.展开更多
The vehicle industry is always in search of breakthrough energy-saving and emission-reduction technologies.In recent years,vehicle intelligence has progressed considerably,and researchers are currently trying to take ...The vehicle industry is always in search of breakthrough energy-saving and emission-reduction technologies.In recent years,vehicle intelligence has progressed considerably,and researchers are currently trying to take advantage of these developments.Here we consider the case of many vehicles forming a queue,i.e.,vehicles traveling at a predetermined speed and distance apart.While the majority of existing studies on this subject have focused on the influence of the longitudinal vehicle spacing,vehicle speed,and the number of vehicles on aerodynamic drag and fuel economy,this study considers the lateral offset distance of the vehicle queue.The group fuel consumption savings rate is calculated and analyzed.As also demonstrated by experimental results,some aerodynamic benefits exist.Moreover,the fuel consumption saving rate of the vehicle queue decreases as the lateral offset distance increases.展开更多
In response to the challenges posed by insufficient real-time performance and suboptimal matching accuracy of traditional feature matching algorithms within automotive panoramic surround view systems,this paper has pr...In response to the challenges posed by insufficient real-time performance and suboptimal matching accuracy of traditional feature matching algorithms within automotive panoramic surround view systems,this paper has proposed a high-performance dimension reduction parallel matching algorithm that integrates Principal Component Analysis(PCA)and Dual-Heap Filtering(DHF).The algorithm employs PCA to map the feature points into the lower-dimensional space and employs the square of Euclidean distance for feature matching,which significantly reduces computational complexity.To ensure the accuracy of feature matching,the algorithm utilizes Dual-Heap Filtering to filter and refine matched point pairs.To further enhance matching speed and make optimal use of computational resources,the algorithm introduces a multi-core parallel matching strategy,greatly elevating the efficiency of feature matching.Compared to Scale-Invariant Feature Transform(SIFT)and Speeded Up Robust Features(SURF),the proposed algorithm reduces matching time by 77%to 80%and concurrently enhances matching accuracy by 5%to 15%.Experimental results demonstrate that the proposed algorithmexhibits outstanding real-time matching performance and accuracy,effectivelymeeting the feature-matching requirements of automotive panoramic surround view systems.展开更多
Established in 1963,China Society of Automotive Engineers(China-SAE)started to formulate the sectoral technical specifications in 2006,taking the lead in exploring the association standards development in the automoti...Established in 1963,China Society of Automotive Engineers(China-SAE)started to formulate the sectoral technical specifications in 2006,taking the lead in exploring the association standards development in the automotive field.Now,nearly 10,000 automotive R&D engineers participate in the development and revision of association standards every year.展开更多
This study evaluates the development of a testing process for the automotive software domain, highlighting challenges stemming from the absence of adequate processes. The research demonstrates the application of Desig...This study evaluates the development of a testing process for the automotive software domain, highlighting challenges stemming from the absence of adequate processes. The research demonstrates the application of Design Science Research methodology in developing, an automotive software testing process—ProTSA, using six functional testing modules. Additionally, the study evaluates the benefits of implementing ProTSA in a specific Original Equipment Manufacturer (OEM) using an experimental single-case approach with industry professionals’ participation through a survey. The study concludes that combining testing techniques with effective communication and alignment is crucial for enhancing software quality. Furthermore, survey data indicates that implementing ProTSA leads to productivity gains by initiating tests early, resulting in time savings in the testing program and increased productivity for the testing team. Future work will explore implementing ProTSA in cybersecurity, over-the-air software updates, and autonomous vehicle testing processes. .展开更多
Instant noodles contain 16 to18 percent fat,including 11 percent from palm oil.Most people have no idea where palm oil comes from or what it is used for,but they could not live without it because it is so widely used ...Instant noodles contain 16 to18 percent fat,including 11 percent from palm oil.Most people have no idea where palm oil comes from or what it is used for,but they could not live without it because it is so widely used in personal hygiene products such as shampoo,tooth paste,facial cream,and soap.It is also an ingredient in automotive lubricants and food such as fried chicken,chocolate,and various pastries.展开更多
Free quenching of automotive leaf springs is a new technology that has gradually started to be applied in the industry in China in recent years.Only a few manufacturers are applying it in the industry.Through more tha...Free quenching of automotive leaf springs is a new technology that has gradually started to be applied in the industry in China in recent years.Only a few manufacturers are applying it in the industry.Through more than half a year of on-site practice,the changes in the hot forming of spring plates before free quenching have been explored,and finally a heat treatment process that meets the production requirements of our company has been developed,achieving normal production.展开更多
E-learning platforms support education systems worldwide, transferring theoretical knowledge as well as soft skills. In the present study high-school pupils’, and adult students’ opinions were evaluated through a mo...E-learning platforms support education systems worldwide, transferring theoretical knowledge as well as soft skills. In the present study high-school pupils’, and adult students’ opinions were evaluated through a modern structured MOODLE interactive course, designed for the needs of the laboratory course “Automotive Systems”. The study concerns Greek secondary vocational education pupils aged 18 and vocational training adult students aged 20 to 50 years. The multistage, equal size simple random cluster sample was used as a sampling method. Pupils and adult students of each cluster completed structured 10-question questionnaires both before and after attending the course. A total of 120 questionnaires were collected. In general, our findings disclosed that the majority of pupils and adult students had significantly improved their knowledge and skills from using MOODLE. They reported strengthening conventional teaching, using the new MOODLE technology. The satisfaction indices improved quite, with the differences in their mean values being statistically significant.展开更多
China is currently vigorously implementing the“energy conservation and emission reduction”and“dual carbon”strategies.As the most resource-advantaged light metal material in China,Magnesium(Mg)alloy is progressivel...China is currently vigorously implementing the“energy conservation and emission reduction”and“dual carbon”strategies.As the most resource-advantaged light metal material in China,Magnesium(Mg)alloy is progressively expanding its application in automobile,rail transportation,aerospace,medical,and electronic products.Chongqing University,Shanghai Jiaotong University,and Australian National University have conducted extensive research on the preparation,properties,and processes of Mg alloys.In the past 20 years,the proportion of Mg alloy in the automotive industry has gradually expanded,whereas currently the design and development of Mg alloy parts for automobiles has rarely been reported.Thus,the application models and typical parts cases of Mg alloy are summarized mainly from the four systems of the whole vehicle(body system,chassis system,powertrain system,interior,and exterior system).Subsequently,two actual original equipment manufacturers(OEM)cases are used to introduce the development logic of reliable die-cast Mg alloy,including forward design,formability analysis,process design analysis,structural redesign,manufacturing,and testing,aiming to share the methods,processes,and focus of attention of automotive OEMs for developing Mg alloy parts to enhance the confidence and motivation of applying Mg alloy in automotive field.Eventually,the multiple challenges faced by Mg alloy materials are sorted out and how to face these challenges are discussed.National policies and regulations,environmental protection and energy saving,and consumer demand will continue to promote the application of Mg.展开更多
The metallurgical properties of the CaO–SiO_(2)–Al_(2)O_(3)–4.6wt%Mg O–Fe_(2)O_(3)slag system,formed by the co-treatment process of spent automotive catalyst(SAC)and copper-bearing electroplating sludge(CBES),were...The metallurgical properties of the CaO–SiO_(2)–Al_(2)O_(3)–4.6wt%Mg O–Fe_(2)O_(3)slag system,formed by the co-treatment process of spent automotive catalyst(SAC)and copper-bearing electroplating sludge(CBES),were studied systematically in this paper.The slag structure,melting temperature,and viscous characteristics were investigated by Fourier transform infrared(FTIR)spectroscopy,Raman spectroscopy,Fact Sage calculation,and viscosity measurements.Experimental results show that the increase of Fe_(2)O_(3)content(3.8wt%–16.6wt%),the mass ratio of CaO/SiO_(2)(m(CaO)/m(SiO_(2)),0.5–1.3),and the mass ratio of SiO_(2)/Al_(2)O_(3)(m(SiO_(2))/m(Al_(2)O_(3)),1.0–5.0)can promote the depolymerization of silicate network,and the presence of a large amount of Fe_(2)O_(3)in form of tetrahedral and octahedral units ensures the charge compensation of Al^(3+)ions and makes Al_(2)O_(3)only behave as an acid oxide.Thermodynamic calculation and viscosity measurements show that with the increase of Fe_(2)O_(3)content,m(Ca O)/m(SiO_(2)),and m(SiO_(2))/m(Al_(2)O_(3)),the depolymerization of silicate network structure and low-melting-point phase transformation first occur within the slag,leading to the decrease in melting point and viscosity of the slag,while further increase causes the formation of high-melting-point phase and a resultant re-increase in viscosity and melting point.Based on experimental analysis,the preferred slag composition with low polymerization degree,viscosity,and melting point is as follows:Fe_(2)O_(3)content of 10.2wt%–13.4wt%,m(CaO)/m(SiO_(2))of 0.7–0.9 and m(SiO_(2))/m(Al_(2)O_(3))of 3.0–4.0.This work provides a theoretical support for slag design in co-smelting process of SAC and CBES.展开更多
Baosteel has excelled in automotive steel sheets in the past three decades.It has made a significant contribution to the development of China’s automotive industry by producing a wide range of high-quality steel prod...Baosteel has excelled in automotive steel sheets in the past three decades.It has made a significant contribution to the development of China’s automotive industry by producing a wide range of high-quality steel products.Some milestones achieved by Baosteel automotive steel sheet were briefly reviewed.The current challenges in producing ultra-high strength steel(UHSS),especially hot-dip galvanized UHSS,were summarized.The most current advancements in UHSS and the corresponding hot-dip galvanizing processes were discussed.The galvanizability of Si-Mn-added QP steel and DP steel, Mn-added TWIP steel, and Al-added low-density steel has been improved by different techniques in Baosteel.展开更多
Humidity can affect the attenuation of MEA(membrane electrode assembly), however, the relationship between humidity and MEA decays is complex and ambiguous in realistic application. Herein, we design a simulating auto...Humidity can affect the attenuation of MEA(membrane electrode assembly), however, the relationship between humidity and MEA decays is complex and ambiguous in realistic application. Herein, we design a simulating automotive protocol, performed on five single fuel cells under RH(relative humidity) 100%,RH 80%, RH 64%, and RH 40%, RH 10%, respectively, to study the relationship of MEA decays and humidity and suggest optimized humidity range to extend the durability. With the electrochemical impedance spectroscopy, cyclic voltammetry, X-ray fluorescence, X-ray diffraction, transmission electron microscope, X-ray photoelectron spectroscopy, the four degradation mechanisms about catalyst layer, including Pt dissolution, Pt coarsening, carbon corrosion and ionomer degradation, are observed. Pt coarsening and carbon corrosion are accelerated by higher water content at high humidity. Ionomer degradation and Pt dissolution are enhanced in low humidity. With the linear sweep voltammetry, ion chromatography,nuclear magnetic resonance, tensile test and scan electron microscope, chemical and mechanical degradation in proton exchange membrane are all observed in these five fuels. Chemical degradation, characterized by membrane thinning and more fluoride loss, occurred markedly in RH 10%. Mechanical degradation, characterized by the non-uniformity thickness and bad mechanical properties, is more pronounced in RH 100%, RH 80%, RH 64%. These two degradations are in a moderate level in RH 40%. The research suggests that the RH range from 64% to 40% is conductive to mitigate the degradation of MEAs operated in automotive applications.展开更多
In automotive industries,panel acoustic contribution analysis(PACA)is used to investigate the contributions of the body panels to the acoustic pressure at a certain point of interest.Currently,PACA is implementedmostl...In automotive industries,panel acoustic contribution analysis(PACA)is used to investigate the contributions of the body panels to the acoustic pressure at a certain point of interest.Currently,PACA is implementedmostly by either experiment-based methods or traditional numerical methods.However,these schemes are effort-consuming and inefficient in solving engineering problems,thereby restraining the further development of PACA in automotive acoustics.In this work,we propose a PACA scheme using discontinuous isogeometric boundary element method(IGABEM)to build an easily implementable and efficient method to identify the relative acoustic contributions of each automotive body panel.Discontinuous IGABEMis more accurate and converges faster than continuous BEM and IGABEM in the interior sound pressure evaluation of automotive compartments.In this work,a contribution ratio is defined to estimate the relative acoustic contribution of the structure panels;it can be calculated by reusing the coefficient matrix that has already been generated in the sound pressure evaluation process.The utilization of the parallel technique enables the proposed method to be more efficient than conventional methods;it is validated in two numerical examples,including a car passenger compartment subjected to realistic boundary conditions.A sound pressure response experiment based on a steel box is conducted to verify the accuracy of the interior sound pressure calculation using discontinuous IGABEM.This work is expected to promote the practical process of IGABEM for application in automotive acoustic problems.展开更多
Our community currently deals with issues such as rising electricity costs,pollution,and global warming.Scientists work to improve energy harvesting-based power generators in order to reduce their impacts.The Seebeck ...Our community currently deals with issues such as rising electricity costs,pollution,and global warming.Scientists work to improve energy harvesting-based power generators in order to reduce their impacts.The Seebeck effect has been used to illustrate the capacity of thermoelectric generators(TEGs)to directly convert thermal energy to electrical energy.They are also ecologically beneficial since they do not include chemical products,function quietly because they lack mechanical structures and/or moving components,and may be built using different fabrication technologies such as three-dimentional(3D)printing,silicon technology,and screen printing,etc.TEGs are also position-independent and have a long operational lifetime.TEGs can be integrated into bulk and flexible devices.This review gives further investigation of TEGs,beginning with a full discussion of their operating principle,kinds,materials utilized,figure of merit,and improvement approaches,which include various thermoelectric material arrangements and utilised technologies.This paper also discusses the use of TEGs in a variety of disciplines such as automobile and biomedical.展开更多
Recently,automotive intrusion detection systems(IDSs)have emerged as promising defense approaches to counter attacks on in-vehicle networks(IVNs).However,the effectiveness of IDSs relies heavily on the quality of the ...Recently,automotive intrusion detection systems(IDSs)have emerged as promising defense approaches to counter attacks on in-vehicle networks(IVNs).However,the effectiveness of IDSs relies heavily on the quality of the datasets used for training and evaluation.Despite the availability of several datasets for automotive IDSs,there has been a lack of comprehensive analysis focusing on assessing these datasets.This paper aims to address the need for dataset assessment in the context of automotive IDSs.It proposes qualitative and quantitative metrics that are independent of specific automotive IDSs,to evaluate the quality of datasets.These metrics take into consideration various aspects such as dataset description,collection environment,and attack complexity.This paper evaluates eight commonly used datasets for automotive IDSs using the proposed metrics.The evaluation reveals biases in the datasets,particularly in terms of limited contexts and lack of diversity.Additionally,it highlights that the attacks in the datasets were mostly injected without considering normal behaviors,which poses challenges for training and evaluating machine learning-based IDSs.This paper emphasizes the importance of addressing the identified limitations in existing datasets to improve the performance and adaptability of automotive IDSs.The proposed metrics can serve as valuable guidelines for researchers and practitioners in selecting and constructing high-quality datasets for automotive security applications.Finally,this paper presents the requirements for high-quality datasets,including the need for representativeness,diversity,and balance.展开更多
Modern vehicles are equipped with multiple Electronic Control Units(ECUs)that support various convenient driving functions,such as the Advanced Driver Assistance System(ADAS).To enable communication between these ECUs...Modern vehicles are equipped with multiple Electronic Control Units(ECUs)that support various convenient driving functions,such as the Advanced Driver Assistance System(ADAS).To enable communication between these ECUs,the Controller Area Network(CAN)protocol is widely used.However,since CAN lacks any security technologies,it is vulnerable to cyber attacks.To address this,researchers have conducted studies on machine learning-based intrusion detection systems(IDSs)for CAN.However,most existing IDSs still have non-negligible detection errors.In this paper,we pro-pose a new filtering-based intrusion detection system(FIDS)to minimize the detection errors of machine learning-based IDSs.FIDS uses a whitelist and a blacklist created from CAN datasets.The whitelist stores the cryptographic hash value of normal packet sequences to correct false positives(FP),while the blacklist corrects false negatives(FN)based on transmission intervals and identifiers of CAN packets.We evaluated the performance of the proposed FIDS by implementing a machine learning-based IDS and applying FIDS to it.We conducted the evaluation using two CAN attack datasets provided by the Hacking and Countermeasure Research Lab(HCRL),which confirmed that FIDS can effectively reduce the FP and FN of the existing IDS.展开更多
Automotive steel is one of the strategic products of Baosteel. During the past three decades,Baosteel has developed various high-performance products to meet the needs of automakers and has achieved great success alon...Automotive steel is one of the strategic products of Baosteel. During the past three decades,Baosteel has developed various high-performance products to meet the needs of automakers and has achieved great success along with the rapid development of China’s automotive industry. Baosteel has become one of the top automotive steel producers in the w orld and a global material solution supplier for car makers.展开更多
This paper considers the non-line-of-sight(NLOS)vehicle localization problem by using millimeter-wave(MMW)automotive radar.Several preliminary attempts for NLOS vehicle detection are carried out and achieve good resul...This paper considers the non-line-of-sight(NLOS)vehicle localization problem by using millimeter-wave(MMW)automotive radar.Several preliminary attempts for NLOS vehicle detection are carried out and achieve good results.Firstly,an electromagnetic(EM)wave NLOS multipath propagation model for vehicle scene is established.Subsequently,with the help of available multipath echoes,a complete NLOS vehicle localiza-tion algorithm is proposed.Finally,simulation and experimental results validate the effectiveness of the established EM wave propagation model and the proposed NLOS vehicle localization algorithm.展开更多
基金supported by the foundation of“Cold area new energy service engineering laboratory battery pack comprehensive test system”from Jilin Provincial Development and Reform Commission(2020C021-6)the National Natural Science Foundation of China(NNSFC,No.52371109).
文摘In order to effectively reduce energy consumption and increase range mile,new energy vehicles represented by Tesla have greatly aroused the application of integrated magnesium(Mg)alloy die casting technology in automobiles.Previously,the application of Mg alloys in automobiles,especially in automotive cockpit components,is quite extensive,while it has almost disappeared for a period of time due to its relatively high cost,causing a certain degree of information loss in the application technology of Mg alloy parts in automobiles.The rapid development of automotive technology has led to a higher requirement for the automotive components compared with those traditional one.Therefore,whatever the components themselves,or the Mg alloy materials and die casting process have to face an increasing challenge,needing to be upgraded.In addition,owing to its high integration characteristics,the application of Mg alloy die casting technology in large-sized and thin-walled automotive parts has inherent advantages and needs to be expanded urgently.Indeed,it necessitates exploring advance Mg alloys and new product structures and optimizing die casting processes.This article summarizes and analyzes the development status of thin-walled and large-sized die casting Mg alloy parts in passenger car cockpit and corresponding material selection methods,die casting processes as well as mold design techniques.Furthermore,this work will aid researchers in establishing a comprehensive understanding of the manufacture of thin-walled and large-sized die casting Mg alloy parts in automobile cockpit.It will also assist them in developing new Mg alloys with improved comprehensive performance and new processes to meet the high requirements for die casting automotive components.
基金Funded by National College Student Innovation and Entrepreneurship Training Program Project(No.CY202036)。
文摘This study explored the synergistic interaction of sewage sludge(SS)and automotive paint sludge(PS)during co-pyrolysis for the optimized treatment of sewage sludge in cement kiln systems,utilizing thermogravimetric analysis(TGA)and thermogravimetric-mass spectrometry(TGA-MS).The result reveals the coexisting synergistic and antagonistic effects in the co-pyrolysis of SS/PS.The synergistic effect arises from hydrogen free radicals in SS and catalytic components in PS,while the main source of the antagonistic effect is that,during the mechanical mixing process,the SS/PS is converted from the particulate form into a dough-like rubbery which contributes to the film-forming effect,hindering the volatilization of volatile components.SS/PS co-pyrolysis reduces the yielding of tar production while increasing coke and gas.This study will provide some in-depth insights into the co-pyrolysis of SS/PS,and offer theoretical support for the subsequent research on the collaborative disposal processes in cement kilns.
基金This study was financially supported by the National Natural Science Foundation of China(52072156)the Postdoctoral Foundation of China(2020M682269).
文摘The vehicle industry is always in search of breakthrough energy-saving and emission-reduction technologies.In recent years,vehicle intelligence has progressed considerably,and researchers are currently trying to take advantage of these developments.Here we consider the case of many vehicles forming a queue,i.e.,vehicles traveling at a predetermined speed and distance apart.While the majority of existing studies on this subject have focused on the influence of the longitudinal vehicle spacing,vehicle speed,and the number of vehicles on aerodynamic drag and fuel economy,this study considers the lateral offset distance of the vehicle queue.The group fuel consumption savings rate is calculated and analyzed.As also demonstrated by experimental results,some aerodynamic benefits exist.Moreover,the fuel consumption saving rate of the vehicle queue decreases as the lateral offset distance increases.
基金the National Natural Science Foundation of China(61803206)the Key R&D Program of Jiangsu Province(BE2022053-2)the Nanjing Forestry University Youth Science and Technology Innovation Fund(CX2018004)for partly funding this project.
文摘In response to the challenges posed by insufficient real-time performance and suboptimal matching accuracy of traditional feature matching algorithms within automotive panoramic surround view systems,this paper has proposed a high-performance dimension reduction parallel matching algorithm that integrates Principal Component Analysis(PCA)and Dual-Heap Filtering(DHF).The algorithm employs PCA to map the feature points into the lower-dimensional space and employs the square of Euclidean distance for feature matching,which significantly reduces computational complexity.To ensure the accuracy of feature matching,the algorithm utilizes Dual-Heap Filtering to filter and refine matched point pairs.To further enhance matching speed and make optimal use of computational resources,the algorithm introduces a multi-core parallel matching strategy,greatly elevating the efficiency of feature matching.Compared to Scale-Invariant Feature Transform(SIFT)and Speeded Up Robust Features(SURF),the proposed algorithm reduces matching time by 77%to 80%and concurrently enhances matching accuracy by 5%to 15%.Experimental results demonstrate that the proposed algorithmexhibits outstanding real-time matching performance and accuracy,effectivelymeeting the feature-matching requirements of automotive panoramic surround view systems.
文摘Established in 1963,China Society of Automotive Engineers(China-SAE)started to formulate the sectoral technical specifications in 2006,taking the lead in exploring the association standards development in the automotive field.Now,nearly 10,000 automotive R&D engineers participate in the development and revision of association standards every year.
文摘This study evaluates the development of a testing process for the automotive software domain, highlighting challenges stemming from the absence of adequate processes. The research demonstrates the application of Design Science Research methodology in developing, an automotive software testing process—ProTSA, using six functional testing modules. Additionally, the study evaluates the benefits of implementing ProTSA in a specific Original Equipment Manufacturer (OEM) using an experimental single-case approach with industry professionals’ participation through a survey. The study concludes that combining testing techniques with effective communication and alignment is crucial for enhancing software quality. Furthermore, survey data indicates that implementing ProTSA leads to productivity gains by initiating tests early, resulting in time savings in the testing program and increased productivity for the testing team. Future work will explore implementing ProTSA in cybersecurity, over-the-air software updates, and autonomous vehicle testing processes. .
文摘Instant noodles contain 16 to18 percent fat,including 11 percent from palm oil.Most people have no idea where palm oil comes from or what it is used for,but they could not live without it because it is so widely used in personal hygiene products such as shampoo,tooth paste,facial cream,and soap.It is also an ingredient in automotive lubricants and food such as fried chicken,chocolate,and various pastries.
文摘Free quenching of automotive leaf springs is a new technology that has gradually started to be applied in the industry in China in recent years.Only a few manufacturers are applying it in the industry.Through more than half a year of on-site practice,the changes in the hot forming of spring plates before free quenching have been explored,and finally a heat treatment process that meets the production requirements of our company has been developed,achieving normal production.
文摘E-learning platforms support education systems worldwide, transferring theoretical knowledge as well as soft skills. In the present study high-school pupils’, and adult students’ opinions were evaluated through a modern structured MOODLE interactive course, designed for the needs of the laboratory course “Automotive Systems”. The study concerns Greek secondary vocational education pupils aged 18 and vocational training adult students aged 20 to 50 years. The multistage, equal size simple random cluster sample was used as a sampling method. Pupils and adult students of each cluster completed structured 10-question questionnaires both before and after attending the course. A total of 120 questionnaires were collected. In general, our findings disclosed that the majority of pupils and adult students had significantly improved their knowledge and skills from using MOODLE. They reported strengthening conventional teaching, using the new MOODLE technology. The satisfaction indices improved quite, with the differences in their mean values being statistically significant.
基金supported partly by the Fundamental Research Funds for Central Universities(No.06500203 and No.00007735).
文摘China is currently vigorously implementing the“energy conservation and emission reduction”and“dual carbon”strategies.As the most resource-advantaged light metal material in China,Magnesium(Mg)alloy is progressively expanding its application in automobile,rail transportation,aerospace,medical,and electronic products.Chongqing University,Shanghai Jiaotong University,and Australian National University have conducted extensive research on the preparation,properties,and processes of Mg alloys.In the past 20 years,the proportion of Mg alloy in the automotive industry has gradually expanded,whereas currently the design and development of Mg alloy parts for automobiles has rarely been reported.Thus,the application models and typical parts cases of Mg alloy are summarized mainly from the four systems of the whole vehicle(body system,chassis system,powertrain system,interior,and exterior system).Subsequently,two actual original equipment manufacturers(OEM)cases are used to introduce the development logic of reliable die-cast Mg alloy,including forward design,formability analysis,process design analysis,structural redesign,manufacturing,and testing,aiming to share the methods,processes,and focus of attention of automotive OEMs for developing Mg alloy parts to enhance the confidence and motivation of applying Mg alloy in automotive field.Eventually,the multiple challenges faced by Mg alloy materials are sorted out and how to face these challenges are discussed.National policies and regulations,environmental protection and energy saving,and consumer demand will continue to promote the application of Mg.
基金financially supported by the Guangzhou Basic and Applied Basic Research Project,China(No.202102020623)the Guangdong Academy of Sciences’Project of Science and Technology Development,China(No.2020 GDASYL-20200103101)+1 种基金the National Key Research and Development Program of China(No.2020YFC1908902)the Natural Science Foundation of Guangdong Province Project,China(No.2020A1515010729)。
文摘The metallurgical properties of the CaO–SiO_(2)–Al_(2)O_(3)–4.6wt%Mg O–Fe_(2)O_(3)slag system,formed by the co-treatment process of spent automotive catalyst(SAC)and copper-bearing electroplating sludge(CBES),were studied systematically in this paper.The slag structure,melting temperature,and viscous characteristics were investigated by Fourier transform infrared(FTIR)spectroscopy,Raman spectroscopy,Fact Sage calculation,and viscosity measurements.Experimental results show that the increase of Fe_(2)O_(3)content(3.8wt%–16.6wt%),the mass ratio of CaO/SiO_(2)(m(CaO)/m(SiO_(2)),0.5–1.3),and the mass ratio of SiO_(2)/Al_(2)O_(3)(m(SiO_(2))/m(Al_(2)O_(3)),1.0–5.0)can promote the depolymerization of silicate network,and the presence of a large amount of Fe_(2)O_(3)in form of tetrahedral and octahedral units ensures the charge compensation of Al^(3+)ions and makes Al_(2)O_(3)only behave as an acid oxide.Thermodynamic calculation and viscosity measurements show that with the increase of Fe_(2)O_(3)content,m(Ca O)/m(SiO_(2)),and m(SiO_(2))/m(Al_(2)O_(3)),the depolymerization of silicate network structure and low-melting-point phase transformation first occur within the slag,leading to the decrease in melting point and viscosity of the slag,while further increase causes the formation of high-melting-point phase and a resultant re-increase in viscosity and melting point.Based on experimental analysis,the preferred slag composition with low polymerization degree,viscosity,and melting point is as follows:Fe_(2)O_(3)content of 10.2wt%–13.4wt%,m(CaO)/m(SiO_(2))of 0.7–0.9 and m(SiO_(2))/m(Al_(2)O_(3))of 3.0–4.0.This work provides a theoretical support for slag design in co-smelting process of SAC and CBES.
文摘Baosteel has excelled in automotive steel sheets in the past three decades.It has made a significant contribution to the development of China’s automotive industry by producing a wide range of high-quality steel products.Some milestones achieved by Baosteel automotive steel sheet were briefly reviewed.The current challenges in producing ultra-high strength steel(UHSS),especially hot-dip galvanized UHSS,were summarized.The most current advancements in UHSS and the corresponding hot-dip galvanizing processes were discussed.The galvanizability of Si-Mn-added QP steel and DP steel, Mn-added TWIP steel, and Al-added low-density steel has been improved by different techniques in Baosteel.
基金supported by the National Key Research and Development Program of China (2018YFB1502502)the National Natural Science Foundation of China (22179127)。
文摘Humidity can affect the attenuation of MEA(membrane electrode assembly), however, the relationship between humidity and MEA decays is complex and ambiguous in realistic application. Herein, we design a simulating automotive protocol, performed on five single fuel cells under RH(relative humidity) 100%,RH 80%, RH 64%, and RH 40%, RH 10%, respectively, to study the relationship of MEA decays and humidity and suggest optimized humidity range to extend the durability. With the electrochemical impedance spectroscopy, cyclic voltammetry, X-ray fluorescence, X-ray diffraction, transmission electron microscope, X-ray photoelectron spectroscopy, the four degradation mechanisms about catalyst layer, including Pt dissolution, Pt coarsening, carbon corrosion and ionomer degradation, are observed. Pt coarsening and carbon corrosion are accelerated by higher water content at high humidity. Ionomer degradation and Pt dissolution are enhanced in low humidity. With the linear sweep voltammetry, ion chromatography,nuclear magnetic resonance, tensile test and scan electron microscope, chemical and mechanical degradation in proton exchange membrane are all observed in these five fuels. Chemical degradation, characterized by membrane thinning and more fluoride loss, occurred markedly in RH 10%. Mechanical degradation, characterized by the non-uniformity thickness and bad mechanical properties, is more pronounced in RH 100%, RH 80%, RH 64%. These two degradations are in a moderate level in RH 40%. The research suggests that the RH range from 64% to 40% is conductive to mitigate the degradation of MEAs operated in automotive applications.
基金funded by the National Natural Science Foundation of China (Grant No.52175111)。
文摘In automotive industries,panel acoustic contribution analysis(PACA)is used to investigate the contributions of the body panels to the acoustic pressure at a certain point of interest.Currently,PACA is implementedmostly by either experiment-based methods or traditional numerical methods.However,these schemes are effort-consuming and inefficient in solving engineering problems,thereby restraining the further development of PACA in automotive acoustics.In this work,we propose a PACA scheme using discontinuous isogeometric boundary element method(IGABEM)to build an easily implementable and efficient method to identify the relative acoustic contributions of each automotive body panel.Discontinuous IGABEMis more accurate and converges faster than continuous BEM and IGABEM in the interior sound pressure evaluation of automotive compartments.In this work,a contribution ratio is defined to estimate the relative acoustic contribution of the structure panels;it can be calculated by reusing the coefficient matrix that has already been generated in the sound pressure evaluation process.The utilization of the parallel technique enables the proposed method to be more efficient than conventional methods;it is validated in two numerical examples,including a car passenger compartment subjected to realistic boundary conditions.A sound pressure response experiment based on a steel box is conducted to verify the accuracy of the interior sound pressure calculation using discontinuous IGABEM.This work is expected to promote the practical process of IGABEM for application in automotive acoustic problems.
文摘Our community currently deals with issues such as rising electricity costs,pollution,and global warming.Scientists work to improve energy harvesting-based power generators in order to reduce their impacts.The Seebeck effect has been used to illustrate the capacity of thermoelectric generators(TEGs)to directly convert thermal energy to electrical energy.They are also ecologically beneficial since they do not include chemical products,function quietly because they lack mechanical structures and/or moving components,and may be built using different fabrication technologies such as three-dimentional(3D)printing,silicon technology,and screen printing,etc.TEGs are also position-independent and have a long operational lifetime.TEGs can be integrated into bulk and flexible devices.This review gives further investigation of TEGs,beginning with a full discussion of their operating principle,kinds,materials utilized,figure of merit,and improvement approaches,which include various thermoelectric material arrangements and utilised technologies.This paper also discusses the use of TEGs in a variety of disciplines such as automobile and biomedical.
基金supported in part by the 2021 Autonomous Driving Development Innovation Project of the Ministry of Science and ICT,‘Development of Technology for Security and Ultra-High-Speed Integrity of the Next-Generation Internal Net-Work of Autonomous Vehicles’(No.2021-0-01348)and in part by the National Research Foundation of Korea(NRF)grant funded by the Korean Government Ministry of Science and ICT(MSIT)under Grant NRF-2021R1A2C2014428.
文摘Recently,automotive intrusion detection systems(IDSs)have emerged as promising defense approaches to counter attacks on in-vehicle networks(IVNs).However,the effectiveness of IDSs relies heavily on the quality of the datasets used for training and evaluation.Despite the availability of several datasets for automotive IDSs,there has been a lack of comprehensive analysis focusing on assessing these datasets.This paper aims to address the need for dataset assessment in the context of automotive IDSs.It proposes qualitative and quantitative metrics that are independent of specific automotive IDSs,to evaluate the quality of datasets.These metrics take into consideration various aspects such as dataset description,collection environment,and attack complexity.This paper evaluates eight commonly used datasets for automotive IDSs using the proposed metrics.The evaluation reveals biases in the datasets,particularly in terms of limited contexts and lack of diversity.Additionally,it highlights that the attacks in the datasets were mostly injected without considering normal behaviors,which poses challenges for training and evaluating machine learning-based IDSs.This paper emphasizes the importance of addressing the identified limitations in existing datasets to improve the performance and adaptability of automotive IDSs.The proposed metrics can serve as valuable guidelines for researchers and practitioners in selecting and constructing high-quality datasets for automotive security applications.Finally,this paper presents the requirements for high-quality datasets,including the need for representativeness,diversity,and balance.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(No.NRF-2021R1A4A1029650).
文摘Modern vehicles are equipped with multiple Electronic Control Units(ECUs)that support various convenient driving functions,such as the Advanced Driver Assistance System(ADAS).To enable communication between these ECUs,the Controller Area Network(CAN)protocol is widely used.However,since CAN lacks any security technologies,it is vulnerable to cyber attacks.To address this,researchers have conducted studies on machine learning-based intrusion detection systems(IDSs)for CAN.However,most existing IDSs still have non-negligible detection errors.In this paper,we pro-pose a new filtering-based intrusion detection system(FIDS)to minimize the detection errors of machine learning-based IDSs.FIDS uses a whitelist and a blacklist created from CAN datasets.The whitelist stores the cryptographic hash value of normal packet sequences to correct false positives(FP),while the blacklist corrects false negatives(FN)based on transmission intervals and identifiers of CAN packets.We evaluated the performance of the proposed FIDS by implementing a machine learning-based IDS and applying FIDS to it.We conducted the evaluation using two CAN attack datasets provided by the Hacking and Countermeasure Research Lab(HCRL),which confirmed that FIDS can effectively reduce the FP and FN of the existing IDS.
文摘Automotive steel is one of the strategic products of Baosteel. During the past three decades,Baosteel has developed various high-performance products to meet the needs of automakers and has achieved great success along with the rapid development of China’s automotive industry. Baosteel has become one of the top automotive steel producers in the w orld and a global material solution supplier for car makers.
基金supported by the National Natural Science Foundation of China(62201510,62001091,61801435,61871080,61801435)the Initial Scientific Research Foundation of University of Science and Technology of China(Y030202059018051)+2 种基金Yangtze River Scholar Program,Sichuan Science and Technology Program(2019JDJQ0014)111 Project(B17008)Henan Provincial Department of Science and Technology Research Project(202102210315,212102210029,202102210-137).
文摘This paper considers the non-line-of-sight(NLOS)vehicle localization problem by using millimeter-wave(MMW)automotive radar.Several preliminary attempts for NLOS vehicle detection are carried out and achieve good results.Firstly,an electromagnetic(EM)wave NLOS multipath propagation model for vehicle scene is established.Subsequently,with the help of available multipath echoes,a complete NLOS vehicle localiza-tion algorithm is proposed.Finally,simulation and experimental results validate the effectiveness of the established EM wave propagation model and the proposed NLOS vehicle localization algorithm.