This paper investigates the path-following control problem with obstacle avoidance of autonomous surface vehicles in the presence of actuator faults,uncertainty and external disturbances.Autonomous surface vehicles in...This paper investigates the path-following control problem with obstacle avoidance of autonomous surface vehicles in the presence of actuator faults,uncertainty and external disturbances.Autonomous surface vehicles inevitably suffer from actuator faults in complex sea environments,which may cause existing obstacle avoidance strategies to fail.To reduce the influence of actuator faults,an improved artificial potential function is constructed by introducing the lower bound of actuator efficiency factors.The nonlinear state observer,which only depends on measurable position information of the autonomous surface vehicle,is used to address uncertainties and external disturbances.By using a backstepping technique and adaptive mechanism,a path-following control strategy with obstacle avoidance and fault tolerance is designed which can ensure that the tracking errors converge to a small neighborhood of zero.Compared with existing results,the proposed control strategy has the capability of obstacle avoidance and fault tolerance simultaneously.Finally,the comparison results through simulations are given to verify the effectiveness of the proposed method.展开更多
Obstacle avoidance becomes a very challenging task for an autonomous underwater vehicle(AUV)in an unknown underwater environment during exploration process.Successful control in such case may be achieved using the mod...Obstacle avoidance becomes a very challenging task for an autonomous underwater vehicle(AUV)in an unknown underwater environment during exploration process.Successful control in such case may be achieved using the model-based classical control techniques like PID and MPC but it required an accurate mathematical model of AUV and may fail due to parametric uncertainties,disturbance,or plant model mismatch.On the other hand,model-free reinforcement learning(RL)algorithm can be designed using actual behavior of AUV plant in an unknown environment and the learned control may not get affected by model uncertainties like a classical control approach.Unlike model-based control model-free RL based controller does not require to manually tune controller with the changing environment.A standard RL based one-step Q-learning based control can be utilized for obstacle avoidance but it has tendency to explore all possible actions at given state which may increase number of collision.Hence a modified Q-learning based control approach is proposed to deal with these problems in unknown environment.Furthermore,function approximation is utilized using neural network(NN)to overcome the continuous states and large statespace problems which arise in RL-based controller design.The proposed modified Q-learning algorithm is validated using MATLAB simulations by comparing it with standard Q-learning algorithm for single obstacle avoidance.Also,the same algorithm is utilized to deal with multiple obstacle avoidance problems.展开更多
This paper presents a novel dynamic A^*path finding algorithm and 3D lidar based local obstacle avoidance strategy for an autonomous vehicle.3D point cloud data is collected and analyzed in real time.Local obstacles a...This paper presents a novel dynamic A^*path finding algorithm and 3D lidar based local obstacle avoidance strategy for an autonomous vehicle.3D point cloud data is collected and analyzed in real time.Local obstacles are detected online and a 2D local obstacle grid map is constructed at 10 Hz/s.The A^*path finding algorithm is employed to generate a local path in this local obstacle grid map by considering both the target position and obstacles.The vehicle avoids obstacles under the guidance of the generated local path.Experiment results have shown the effectiveness of the obstacle avoidance navigation algorithm proposed.展开更多
In this paper, the fixed-time event-triggered obstacle avoidance consensus control for a multi-AUV time-varying formation system in a 3D environment is presented by using an improved artificial potential field and lea...In this paper, the fixed-time event-triggered obstacle avoidance consensus control for a multi-AUV time-varying formation system in a 3D environment is presented by using an improved artificial potential field and leader-follower strategy(IAPF-LF). Firstly, the proposed fixed-time control can achieve the desired multi-AUV formation within a fixed settling time in any initial system state. Secondly, an event-triggered communication strategy is developed to govern the communication among AUVs, and the communication energy consumption can be decremented. The time-varying formation obstacle avoidance control algorithm based on IAPF-LF is designed to avoid static and dynamic obstacles, the desired formation is maintained in the presence of external disturbances, and there is no Zeno behavior under the fixed-time event-triggered consensus control strategy.The stability of the system is proved by the Lyapunov function and inequality scaling. Finally, simulation examples and water pool experiments are reported to verify the performance of the proposed theoretical algorithms.展开更多
This paper presents a novel vision-based obstacle avoidance approach for the Autonomous Mobile Robot (AMR) with a Pan-Tilt-Zoom (PTZ) camera as its only sensing modality. The approach combines the morphological closin...This paper presents a novel vision-based obstacle avoidance approach for the Autonomous Mobile Robot (AMR) with a Pan-Tilt-Zoom (PTZ) camera as its only sensing modality. The approach combines the morphological closing operation based on Sobel Edge Detection Operation and the (μ-kσ) thresholding technique to detect obstacles to soften the various lighting and ground floor effects. Both the morphology method and thresholding technique are computationally simple. The processing speed of the algorithm is fast enough to avoid some active obstacles. In addition, this approach takes into account the history obstacle effects on the current state. Fuzzy logic is used to control the behaviors of AMR as it navigates in the environment. All behaviors run concurrently and generate motor response solely based on vision perception. A priority based on subsumption coordinator selects the most appropriate response to direct the AMR away from obstacles. Validation of the proposed approach is done on a Pioneer 1 mobile robot.展开更多
This paper describes path re-planning techniques and underwater obstacle avoidance for unmanned surface vehicle(USV) based on multi-beam forward looking sonar(FLS). Near-optimal paths in static and dynamic environment...This paper describes path re-planning techniques and underwater obstacle avoidance for unmanned surface vehicle(USV) based on multi-beam forward looking sonar(FLS). Near-optimal paths in static and dynamic environments with underwater obstacles are computed using a numerical solution procedure based on an A* algorithm. The USV is modeled with a circular shape in 2 degrees of freedom(surge and yaw). In this paper, two-dimensional(2-D) underwater obstacle avoidance and the robust real-time path re-planning technique for actual USV using multi-beam FLS are developed. Our real-time path re-planning algorithm has been tested to regenerate the optimal path for several updated frames in the field of view of the sonar with a proper update frequency of the FLS. The performance of the proposed method was verified through simulations, and sea experiments. For simulations, the USV model can avoid both a single stationary obstacle, multiple stationary obstacles and moving obstacles with the near-optimal trajectory that are performed both in the vehicle and the world reference frame. For sea experiments, the proposed method for an underwater obstacle avoidance system is implemented with a USV test platform. The actual USV is automatically controlled and succeeded in its real-time avoidance against the stationary undersea obstacle in the field of view of the FLS together with the Global Positioning System(GPS) of the USV.展开更多
An important concept proposed in the early stage of robot path planning field is the shrinking of a robot to a point and meanwhile the expanding of obstacles in the workspace as a set of new obstacles. The resulting g...An important concept proposed in the early stage of robot path planning field is the shrinking of a robot to a point and meanwhile the expanding of obstacles in the workspace as a set of new obstacles. The resulting grown obstacles are called the Configuration Space (Cspace) obstacles. The find-path problem is then transformed into that of finding a collision-free path for a point robot among the Cspace obstacles. However, the research experiences have shown that the Cspace transformation is very hard when the following situations occur: 1) both the robot and obstacles are not polygons, and 2) the robot is allowed to rotate. This situation gets even worse when the robot and obstacles are three dimensional (3D) objects with various shapes. For this reason, direct path planning approaches without the Cspace transformation is quite useful and expected. Motivated by the practical requirements of robot path planning, a generalized constrained optimization problem (GCOP) with not only logic AND but also logic OR relationships was proposed and a mathematical solution developed previously. This paper inherits the fundamental ideas of inequality and optimization techniques from the previous work, converts the obstacle avoidance problem into a semi-infinite constrained optimization problem with the help of the mathematical transformation, and proposes a direct path planning approach without Cspace calculation, which is quite different from traditional methods. To show its merits, simulation results in 3D space have been presented.展开更多
This paper focuses on planning the obstacle-avoiding paths of multiple autonomous underwater vehicles(AUVs) in complex ocean environment, with the time coordination of simultaneous arrival. By imitating the nature phe...This paper focuses on planning the obstacle-avoiding paths of multiple autonomous underwater vehicles(AUVs) in complex ocean environment, with the time coordination of simultaneous arrival. By imitating the nature phenomenon that river water avoids rocks and reaches the destination, the interfered fluid dynamical system(IFDS) is first presented to obtain the single-AUV path for obstacle avoidance, where the modulation matrix is calculated to quantify the influence of obstacles especially. Then the two-layer comprehensive adjustment to path length and voyage speed is utilized, aiming to achieve the simultaneous arrival at destination between multi-AUVs. By adjusting reactive parameters of IFDS, the former is to roughly ensure the intersection of AUVs' potential arrival time range to be non-null. On this basis, the latter adjusts each AUV's voyage speed finely using the consensus method with state predictor, which has faster convergence speed. If the multi-AUVs communication network is connected, the whole system will quickly converge to the consensus state, i.e., the estimated time of arrival(ETA) of each AUV tends to be equal. Finally, the simulation results verify the advantages of our proposed method.展开更多
基金the National Natural Science Foundation of China(51939001,52171292,51979020,61976033)Dalian Outstanding Young Talents Program(2022RJ05)+1 种基金the Topnotch Young Talents Program of China(36261402)the Liaoning Revitalization Talents Program(XLYC20-07188)。
文摘This paper investigates the path-following control problem with obstacle avoidance of autonomous surface vehicles in the presence of actuator faults,uncertainty and external disturbances.Autonomous surface vehicles inevitably suffer from actuator faults in complex sea environments,which may cause existing obstacle avoidance strategies to fail.To reduce the influence of actuator faults,an improved artificial potential function is constructed by introducing the lower bound of actuator efficiency factors.The nonlinear state observer,which only depends on measurable position information of the autonomous surface vehicle,is used to address uncertainties and external disturbances.By using a backstepping technique and adaptive mechanism,a path-following control strategy with obstacle avoidance and fault tolerance is designed which can ensure that the tracking errors converge to a small neighborhood of zero.Compared with existing results,the proposed control strategy has the capability of obstacle avoidance and fault tolerance simultaneously.Finally,the comparison results through simulations are given to verify the effectiveness of the proposed method.
基金the support of Centre of Excellence (CoE) in Complex and Nonlinear dynamical system (CNDS), through TEQIP-II, VJTI, Mumbai, India
文摘Obstacle avoidance becomes a very challenging task for an autonomous underwater vehicle(AUV)in an unknown underwater environment during exploration process.Successful control in such case may be achieved using the model-based classical control techniques like PID and MPC but it required an accurate mathematical model of AUV and may fail due to parametric uncertainties,disturbance,or plant model mismatch.On the other hand,model-free reinforcement learning(RL)algorithm can be designed using actual behavior of AUV plant in an unknown environment and the learned control may not get affected by model uncertainties like a classical control approach.Unlike model-based control model-free RL based controller does not require to manually tune controller with the changing environment.A standard RL based one-step Q-learning based control can be utilized for obstacle avoidance but it has tendency to explore all possible actions at given state which may increase number of collision.Hence a modified Q-learning based control approach is proposed to deal with these problems in unknown environment.Furthermore,function approximation is utilized using neural network(NN)to overcome the continuous states and large statespace problems which arise in RL-based controller design.The proposed modified Q-learning algorithm is validated using MATLAB simulations by comparing it with standard Q-learning algorithm for single obstacle avoidance.Also,the same algorithm is utilized to deal with multiple obstacle avoidance problems.
基金the National Natural Science Foundation of China(No.51577112,51575328)Science and Technology Commission of Shanghai Municipality Project(No.16511108600).
文摘This paper presents a novel dynamic A^*path finding algorithm and 3D lidar based local obstacle avoidance strategy for an autonomous vehicle.3D point cloud data is collected and analyzed in real time.Local obstacles are detected online and a 2D local obstacle grid map is constructed at 10 Hz/s.The A^*path finding algorithm is employed to generate a local path in this local obstacle grid map by considering both the target position and obstacles.The vehicle avoids obstacles under the guidance of the generated local path.Experiment results have shown the effectiveness of the obstacle avoidance navigation algorithm proposed.
基金supported in part by the National Natural Science Foundation of China (62033009)the Creative Activity Plan for Science and Technology Commission of Shanghai (20510712300,21DZ2293500)the Supported by Science Foundation of Donghai Laboratory。
文摘In this paper, the fixed-time event-triggered obstacle avoidance consensus control for a multi-AUV time-varying formation system in a 3D environment is presented by using an improved artificial potential field and leader-follower strategy(IAPF-LF). Firstly, the proposed fixed-time control can achieve the desired multi-AUV formation within a fixed settling time in any initial system state. Secondly, an event-triggered communication strategy is developed to govern the communication among AUVs, and the communication energy consumption can be decremented. The time-varying formation obstacle avoidance control algorithm based on IAPF-LF is designed to avoid static and dynamic obstacles, the desired formation is maintained in the presence of external disturbances, and there is no Zeno behavior under the fixed-time event-triggered consensus control strategy.The stability of the system is proved by the Lyapunov function and inequality scaling. Finally, simulation examples and water pool experiments are reported to verify the performance of the proposed theoretical algorithms.
基金TheNationalNaturalSienceFoundationofChina (No .6 2 385 2 )
文摘This paper presents a novel vision-based obstacle avoidance approach for the Autonomous Mobile Robot (AMR) with a Pan-Tilt-Zoom (PTZ) camera as its only sensing modality. The approach combines the morphological closing operation based on Sobel Edge Detection Operation and the (μ-kσ) thresholding technique to detect obstacles to soften the various lighting and ground floor effects. Both the morphology method and thresholding technique are computationally simple. The processing speed of the algorithm is fast enough to avoid some active obstacles. In addition, this approach takes into account the history obstacle effects on the current state. Fuzzy logic is used to control the behaviors of AMR as it navigates in the environment. All behaviors run concurrently and generate motor response solely based on vision perception. A priority based on subsumption coordinator selects the most appropriate response to direct the AMR away from obstacles. Validation of the proposed approach is done on a Pioneer 1 mobile robot.
基金supported by the Ministry of Science and Technology of Thailand
文摘This paper describes path re-planning techniques and underwater obstacle avoidance for unmanned surface vehicle(USV) based on multi-beam forward looking sonar(FLS). Near-optimal paths in static and dynamic environments with underwater obstacles are computed using a numerical solution procedure based on an A* algorithm. The USV is modeled with a circular shape in 2 degrees of freedom(surge and yaw). In this paper, two-dimensional(2-D) underwater obstacle avoidance and the robust real-time path re-planning technique for actual USV using multi-beam FLS are developed. Our real-time path re-planning algorithm has been tested to regenerate the optimal path for several updated frames in the field of view of the sonar with a proper update frequency of the FLS. The performance of the proposed method was verified through simulations, and sea experiments. For simulations, the USV model can avoid both a single stationary obstacle, multiple stationary obstacles and moving obstacles with the near-optimal trajectory that are performed both in the vehicle and the world reference frame. For sea experiments, the proposed method for an underwater obstacle avoidance system is implemented with a USV test platform. The actual USV is automatically controlled and succeeded in its real-time avoidance against the stationary undersea obstacle in the field of view of the FLS together with the Global Positioning System(GPS) of the USV.
文摘An important concept proposed in the early stage of robot path planning field is the shrinking of a robot to a point and meanwhile the expanding of obstacles in the workspace as a set of new obstacles. The resulting grown obstacles are called the Configuration Space (Cspace) obstacles. The find-path problem is then transformed into that of finding a collision-free path for a point robot among the Cspace obstacles. However, the research experiences have shown that the Cspace transformation is very hard when the following situations occur: 1) both the robot and obstacles are not polygons, and 2) the robot is allowed to rotate. This situation gets even worse when the robot and obstacles are three dimensional (3D) objects with various shapes. For this reason, direct path planning approaches without the Cspace transformation is quite useful and expected. Motivated by the practical requirements of robot path planning, a generalized constrained optimization problem (GCOP) with not only logic AND but also logic OR relationships was proposed and a mathematical solution developed previously. This paper inherits the fundamental ideas of inequality and optimization techniques from the previous work, converts the obstacle avoidance problem into a semi-infinite constrained optimization problem with the help of the mathematical transformation, and proposes a direct path planning approach without Cspace calculation, which is quite different from traditional methods. To show its merits, simulation results in 3D space have been presented.
基金supported by the Natural Science Foundation of Shandong Province,China(Grant No.ZR2018BF016)China Postdoctoral Science Foundation(Grant No.2017M622278)the Fundamental Research Funds for the Central Universities(Grant No.201713046)
文摘This paper focuses on planning the obstacle-avoiding paths of multiple autonomous underwater vehicles(AUVs) in complex ocean environment, with the time coordination of simultaneous arrival. By imitating the nature phenomenon that river water avoids rocks and reaches the destination, the interfered fluid dynamical system(IFDS) is first presented to obtain the single-AUV path for obstacle avoidance, where the modulation matrix is calculated to quantify the influence of obstacles especially. Then the two-layer comprehensive adjustment to path length and voyage speed is utilized, aiming to achieve the simultaneous arrival at destination between multi-AUVs. By adjusting reactive parameters of IFDS, the former is to roughly ensure the intersection of AUVs' potential arrival time range to be non-null. On this basis, the latter adjusts each AUV's voyage speed finely using the consensus method with state predictor, which has faster convergence speed. If the multi-AUVs communication network is connected, the whole system will quickly converge to the consensus state, i.e., the estimated time of arrival(ETA) of each AUV tends to be equal. Finally, the simulation results verify the advantages of our proposed method.