期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Problems and Barriers Impeding the Implementation of MagLev Assisted Aircraft Take-Off and Landing Concept 被引量:1
1
作者 Jozsef Rohacs Daniel Rohacs 《Journal of Transportation Technologies》 2018年第2期91-118,共28页
Nowadays, the success of the new technology development and deployment process depends not only on technical, technological solutions, but also on solving the non-technological problems and crossing the societal and p... Nowadays, the success of the new technology development and deployment process depends not only on technical, technological solutions, but also on solving the non-technological problems and crossing the societal and psychological barriers. A large international European projects, GABRIEL1 had developed a maglev assisted aircraft take-off and landing, that was applied to conceptual design of aircraft and required on-board and ground systems, had analysed all impacts (effects of concept deployment on effectiveness, safety, security, noise, emissions) and had demonstrated the safe applicability by concept validation. The applied methodology, used methods and the results of the Gabriel projects had been described and discussed by 55 project deliverables. This paper has a special goal: investigating the problems and barriers of possible implementing of the radically new technology, aircraft MagLev assisted take-off and landing. The study was started by identification and classification of the problems and barriers. After it, the problems were systematically analysed by use of special methodology containing the understanding (description) of the problems, investigation of the possible solutions and discussing their applicability (mainly by use of the Gabriel project results). The paper has three major sections: 1) description of the Gabriel concept and project results, 2) introducing some related thoughts on general aspects of new technology developments, and 3) discussion on the problems and their solutions. The major classes of the problems are the 1) technical, technological problems as developing a radically new solution, landing the undercarriage-less aircraft on the magnetic tracks, 2) stakeholders’ problems as decision makers kicking against supporting the developments of so radically new technologies and 3) society barriers like society worrying on and fear of future passengers on flying by aircraft have not conventional undercarriage systems. The paper will show that these problems have safe and cost-effective solutions. 展开更多
关键词 MAGLEV ASSISTED AIRCRAFT take-off and landing PROBLEMS Barriers of Radically New Technologies’ IMPLEMENTATION Society Acceptation
下载PDF
The Influence of Climate Change and Variability on Aircraft Take-off and Landing Performance;a Case Study of the Abeid Amani Karume International Airport-Zanzibar
2
作者 Omar Mohamed Haji Kombo Hamad Kai +4 位作者 Sara Abdalla Khamis Said Suleiman Bakar Hassan Rashid Ali Gharib Hamza Mohamed Fatma Said Seif 《Journal of Transportation Technologies》 2022年第3期453-474,共22页
Climate change (CC) and variability have been world widely reported to pose number of risks in aviation industry including accidents, astray, and other operational difficulties. The impact of weather on landing and ta... Climate change (CC) and variability have been world widely reported to pose number of risks in aviation industry including accidents, astray, and other operational difficulties. The impact of weather on landing and take-off performances has been several times experienced at Abeid Amani Karume International Airport (AAKIA);however, the influence of climate change and variability to the aircraft performance needs to be assessed. Thus, this study investigated the influence of climate change and variability on aircrafts take-off and landing performances. Specifically, the study investigated;i) the influence of climate change on Take-off Distance Required (TODR) and Maximum Take-off Mass (MTOM) for different types of aircraft;ii) the influence of climate variability to the aircraft landing performance on light, medium and heavy aircraft and lastly, iii) the study investigated the seasonal and annual variability on aircraft landing performance due to climate variability. The datasets used in this study include the eight years (2014-2021), aircraft operational records (diversion and missed approach events) and Aviation Routine Weather Reports (METAR) records which were utilized as the indicators for landing performance, the long-term (1990-2020) annual maximum temperatures (Tmax) which was used to determine the TODR and MTOM. Statistical tools including mean, percentage changes, correlations, regression, and the chi-square test were used for analysis and hypotheses testing. The results revealed that light and medium aircraft categories were significantly most affected on diversion events as compared to the heavy categories;however, for the missed approach events the impact was vice versa. Moreover, the seasonal and annual variability on diversion and missed approach events were significantly different (at p ≤ 0.001). As for the take-off performance, results show that the TODR and MTOM were significantly increasing and decreasing (at p ≤ 0.001), based on increasing air temperatures. Therefore, the study concludes that the changing climate has significantly affected aircraft by increasing the TODR and decreasing the MTOM, while the climate variability has significantly affected landing performance by influencing the diversion and missed approach events. Thus, the study recommends (i) further research works including the feasibility study on runway extension for the safety of future aircraft operations at the AAKIA and (ii) proper maintenance and improvement of the Instrumental Landing Systems (ILS) as an adaptation measures to the landing aircraft during bad weather events. 展开更多
关键词 Aircraft Take off/landing Performance Missed Approach DIVERSION Take off Distance Required Maximum take-off Mass DIVERSION Missed Approach
下载PDF
Prognostics for Lithium-ion batteries for electric Vertical Take-off andLanding aircraft using data-driven machine learning
3
作者 Mihaela Mitici Birgitte Hennink +1 位作者 Marilena Pavel Jianning Dong 《Energy and AI》 2023年第2期145-162,共18页
The health management of batteries is a key enabler for the adoption of Electric Vertical Take-off and Landingvehicles (eVTOLs). Currently, few studies consider the health management of eVTOL batteries. One distinctch... The health management of batteries is a key enabler for the adoption of Electric Vertical Take-off and Landingvehicles (eVTOLs). Currently, few studies consider the health management of eVTOL batteries. One distinctcharacteristic of batteries for eVTOLs is that the discharge rates are significantly larger during take-off andlanding, compared with the battery discharge rates needed for automotives. Such discharge protocols areexpected to impact the long-run health of batteries. This paper proposes a data-driven machine learningframework to estimate the state-of-health and remaining-useful-lifetime of eVTOL batteries under varying flightconditions and taking into account the entire flight profile of the eVTOLs. Three main features are consideredfor the assessment of the health of the batteries: charge, discharge and temperature. The importance of thesefeatures is also quantified. Considering battery charging before flight, a selection of missions for state-ofhealth and remaining-useful-lifetime prediction is performed. The results show that indeed, discharge-relatedfeatures have the highest importance when predicting battery state-of-health and remaining-useful-lifetime.Using several machine learning algorithms, it is shown that the battery state-of-health and remaining-useful-lifeare well estimated using Random Forest regression and Extreme Gradient Boosting, respectively. 展开更多
关键词 Electric Vertical take-off and landing vehicles Lithium-ion battery STATE-OF-HEALTH Machine learning Remaining-useful-life
原文传递
A multi-strategy pigeon-inspired optimization approach to active disturbance rejection control parameters tuning for vertical take-off and landing fixed-wing UAV 被引量:9
4
作者 Hangxuan HE Haibin DUAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第1期19-30,I0001,共13页
In this paper.Active Disturbance Rejection Control(ADRC)is utilized in the pitch control of a vertical take-off and landing fixed-wing Unmanned Aerial Vehicle(UAV)to address the problem of height fluctuation during th... In this paper.Active Disturbance Rejection Control(ADRC)is utilized in the pitch control of a vertical take-off and landing fixed-wing Unmanned Aerial Vehicle(UAV)to address the problem of height fluctuation during the transition from hover to level flight.Considering the difficulty of parameter tuning of ADRC as well as the requirement of accuracy and rapidity of the controller,a Multi-Strategy Pigeon-Inspired Optimization(MSPIO)algorithm is employed.Particle Swarm Optimization(PSO),Genetic Algorithm(GA),the basic Pigeon-Inspired Optimization(PIO),and an improved PIO algorithm CMPIO are compared.In addition,the optimized ADRC control system is compared with the pure Proportional-Integral-Derivative(PID)control system and the non-optimized ADRC control system.The effectiveness of the designed control strategy for forward transition is verified and the faster convergence speed and better exploitation ability of the proposed MSPIO algorithm are confirmed by simulation results. 展开更多
关键词 Active Disturbance Rejection Control(ADRC) Pigeon-inspired optimization algorithm Transition mode Unmanned Aerial Vehicle(UAV) Vertical take-off and landing
原文传递
Development of a Bird-like Flapping-wing Aerial Vehicle with Autonomous Take-off and Landing Capabilities 被引量:2
5
作者 Dongfu Ma Bifeng Song +2 位作者 Zhihe Wang Jianlin Xuan Dong Xue 《Journal of Bionic Engineering》 SCIE EI CSCD 2021年第6期1291-1303,共13页
The lack of autonomous take-off and landing capabilities of bird-like flapping-wing aerial vehicles(BFAVs)seriously restricts their further development and application.Thus,combined with the current research results o... The lack of autonomous take-off and landing capabilities of bird-like flapping-wing aerial vehicles(BFAVs)seriously restricts their further development and application.Thus,combined with the current research results on the autonomous take-off and landing technology of unmanned aerial vehicles,four types of technologies are studied,including jumping take-off and landing technology,taxiing take-off and landing technology,gliding take-off and landing technology,and vertical take-off and landing(VTOL)technology.Based on the analytic hierarchy process(AHP)-comprehensive evaluation method,a fuzzy comprehensive evaluation model for the autonomous take-off and landing scheme of a BFAV is established,and four schemes are evaluated concretely.The results show that under the existing technical conditions,the hybrid layout VTOL scheme is the best.Furthermore,the detailed design and development of the prototype of a BFAV with a four-rotor hybrid layout are carried out,and the vehicle performance is tested.The results prove that through the four-rotor hybrid layout design,the BFAV has good autonomous take-off and landing abilities.The power consumption analysis shows that for a fixed-point reconnaissance mission,when the mission radius is less than 3.38 km,the VTOL type exhibits longer mission duration than the hand-launched type. 展开更多
关键词 Bird-like flapping-wing aerial vehicle(BFAV) Autonomous take-off and landing take-off mechanism Hybrid layout
原文传递
New stabilization design for planar vertical take-off and landing aircrafts
6
作者 Ye, Huawen Sheng, Liang +1 位作者 Gui, Weihua Yang, Chunhua 《控制理论与应用(英文版)》 EI 2011年第2期195-202,共8页
This paper presents a new stabilizing control law for a planar vertical take-off and landing aircraft.The model is first transformed into an equivalent form,and then a control law consisting of a linear term and a sat... This paper presents a new stabilizing control law for a planar vertical take-off and landing aircraft.The model is first transformed into an equivalent form,and then a control law consisting of a linear term and a saturated term is given for a related subsystem,with the saturation levels being assigned as large as possible.Compared to the existing saturation scheme in which all states are restricted by saturations,the design brings about a relatively fast convergence.The effectiveness and advantage of the design are validated by numerical simulations. 展开更多
关键词 STABILIZATION Planar vertical take-off and landing (PVTOL) Nonlinear control Saturated control
原文传递
Development of Rescue Material Transport UAV (Unmanned Aerial Vehicle)
7
作者 Daeil Jo Yongjin Kwon 《World Journal of Engineering and Technology》 2017年第4期720-729,共10页
Recently, the market for drones is growing rapidly. Commercial UAVs (Unmanned Aerial Vehicles, or drones) are increasingly being used for various purposes, such as geographic survey, rescue missions, inspection of ind... Recently, the market for drones is growing rapidly. Commercial UAVs (Unmanned Aerial Vehicles, or drones) are increasingly being used for various purposes, such as geographic survey, rescue missions, inspection of industrial facilities, traffic monitoring and delivery of cargos and goods. In particular, the drones have great potential for life-saving operations. A missing person, for example, can be rapidly and effectively searched using a drone in comparison with the conventional search operations. However, there is no commercially available rescue UAV until now. The motivation for this study is to design an unmanned aerial vehicle capable of vertical takeoff and landing, while containing a high power propellant apparatus in order to lift a heavy cargo that contains rescue materials (such as water, food, and medicine). We used the EDF (Electric Ducted Fan) technology as opposed to the conventional motor and prop combination. The EDF can produce the power about three times higher than the motor-prop combination. This became suitable for transportation of rescue goods, and can be widely used in rescue operations in natural environments. Based on these results, the UAV for rescue material transport capable of heavy vertical takeoff and landing is developed, including airframe, flight control computer and GCS (ground control station). 展开更多
关键词 High-Powered PROPELLANT Vertical take-off and landing RESCUE DRONE GCS (Ground CONTROL Station) FCC (Flight CONTROL Computer)
下载PDF
Lift System Design of Tail-Sitter Unmanned Aerial Vehicle
8
作者 Dizhou Zhang Zili Chen Junwei Lv 《Intelligent Control and Automation》 2012年第4期285-290,共6页
The main advantage of tail-sitter unmanned aerial vehicle (UAV) are introduced. Three design solutions of rotor tail-sitter lift system of UAV have been presented and the respective control strategies and characterist... The main advantage of tail-sitter unmanned aerial vehicle (UAV) are introduced. Three design solutions of rotor tail-sitter lift system of UAV have been presented and the respective control strategies and characteristics of three solutions are also analyzed in the paper, through the related experiments the design of twin-rotor lift system is verified, and its feasibility is proved. The characteristics and the applying background of the twin-rotor tail-sitter UAV are described in detail. Some useful conclusions of the lift system for tail-sitter UAV are obtained. 展开更多
关键词 Tail-Sitter UAV Vertical take-off and landing (VTOL) ROTOR FLIGHT Control
下载PDF
Flight Transient Estimation of VTOL Aircraft with Propellers
9
作者 Nickolay Zosimovych 《Advances in Aerospace Science and Technology》 2022年第1期85-95,共11页
Methodological issues associated with the determination of the vertical take-off and landing aerodynamic parameters equipped with two rotary propellers during take-off and hovering, descent and landing are studied in ... Methodological issues associated with the determination of the vertical take-off and landing aerodynamic parameters equipped with two rotary propellers during take-off and hovering, descent and landing are studied in the proposed article. During the computer simulation process, kinematics parameters diagrams were made, aerodynamic coefficients and propellers thrust components at all stages of aircraft take-off were estimated. That numerical data can be used in a preliminary stage of aerodynamic design for the vertical take-off and landing aircraft and electric drones at the determination of control and equalization elements geometric and kinematic parameters. 展开更多
关键词 Vertical take-off and landing (VTOL) Drone PROPELLER TRANSIENT THRUST Vector Modeling Kinematic Aerodynamic Coefficient
下载PDF
Experimental research on aero-propulsion coupling characteristics of a distributed electric propulsion aircraft 被引量:2
10
作者 Xingyu ZHANG Wei ZHANG +2 位作者 Weilin LI Xiaobin ZHANG Tao LEI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第2期201-212,共12页
Distributed Electric Propulsion(DEP)aircraft use multiple electric motors to drive the propulsors,which gives potential benefits to aerodynamic-propulsion interaction.To investigate and quantify the aerodynamic-propul... Distributed Electric Propulsion(DEP)aircraft use multiple electric motors to drive the propulsors,which gives potential benefits to aerodynamic-propulsion interaction.To investigate and quantify the aerodynamic-propulsion interaction effect of the wing section,we built a DEP demonstrator with 24"high-lift"Electric Ducted Fans(EDFs)distributed along the wing’s trailing edge.This paper explores and compares the aero-propulsion coupling characteristics under various upstream speed,throttle,and EDF mounting surface deflection angles using a series of wind tunnel tests.We compare various lift-augmentation power conditions to the clean configuration without propulsion unit under the experiment condition of 15-25 m/s freestream flow and angles of attack from-4°to 16°.The comparison of computational results to the experimental results verifies the effectiveness of the computational fluid dynamic analysis method and the modeling method for the DEP configuration.The results show that the EDFs can produce significant lift increment and drag reduction simultaneously,which is accordant with the potential benefit of Boundary Layer Ingestion(BLI)at low airspeed. 展开更多
关键词 Aero-propulsion coupling Boundary layer ingestion Distributed electric propulsion Short take-off and landing(STOL) Wind-tunnel experiment
原文传递
Robust Optimal Higher-order-observer-based Dynamic Sliding Mode Control for VTOL Unmanned Aerial Vehicles 被引量:2
11
作者 Yashar Mousavi Amin Zarei +1 位作者 Arash Mousavi Mohsen Biari 《International Journal of Automation and computing》 EI CSCD 2021年第5期802-813,共12页
This paper investigates the precise trajectory tracking of unmanned aerial vehicles(UAV) capable of vertical take-off and landing(VTOL) subjected to external disturbances. For this reason, a robust higher-order-observ... This paper investigates the precise trajectory tracking of unmanned aerial vehicles(UAV) capable of vertical take-off and landing(VTOL) subjected to external disturbances. For this reason, a robust higher-order-observer-based dynamic sliding mode controller(HOB-DSMC) is developed and optimized using the fractional-order firefly algorithm(FOFA). In the proposed scheme, the sliding surface is defined as a function of output variables, and the higher-order observer is utilized to estimate the unmeasured variables,which effectively alleviate the undesirable effects of the chattering phenomenon. A neighboring point close to the sliding surface is considered, and as the tracking error approaches this point, the second control is activated to reduce the control input. The stability analysis of the closed-loop system is studied based on Lyapunov stability theorem. For a better study of the proposed scheme, various trajectory tracking tests are provided, where accurate tracking and strong robustness can be simultaneously ensured. Comparative simulation results validate the proposed control strategy′s effectiveness and its superiorities over conventional sliding mode controller(SMC) and integral SMC approaches. 展开更多
关键词 Unmanned aerial vehicle dynamic sliding mode trajectory tracking fractional firefly algorithm vertical take-off and landing system
原文传递
基于STM32单片机四旋翼无人机自主飞行设计 被引量:4
12
作者 宗意凯 曾宪阳 +5 位作者 施子凡 杨红莉 陈春春 徐长城 孙钢 张宇昕 《电子技术(上海)》 2018年第6期84-87,共4页
文中针对四旋翼无人机,设计并实现了一种有效的自主控制无人机起落的策略方案。以高速STM32单片机作为控制核心,对飞行器系统进行了模块化设计。给出了无人机的垂直、俯仰、滚转、偏航等运动控制方案,重点设计了主控程序和自主起降方案... 文中针对四旋翼无人机,设计并实现了一种有效的自主控制无人机起落的策略方案。以高速STM32单片机作为控制核心,对飞行器系统进行了模块化设计。给出了无人机的垂直、俯仰、滚转、偏航等运动控制方案,重点设计了主控程序和自主起降方案。在惯性测量、驱动等方面注意把控,实验证明该控制方案合理有效。 展开更多
关键词 四旋翼无人机 STM32单片机 自主起降
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部