BACKGROUND Hepatocellular carcinoma(HCC)is a major health challenge with high incidence and poor survival rates in China.Systemic therapies,particularly tyrosine kinase inhibitors(TKIs),are the first-line treatment fo...BACKGROUND Hepatocellular carcinoma(HCC)is a major health challenge with high incidence and poor survival rates in China.Systemic therapies,particularly tyrosine kinase inhibitors(TKIs),are the first-line treatment for advanced HCC,but resistance is common.The Rho GTPase family member Rho GTPase activating protein 12(ARHGAP12),which regulates cell adhesion and invasion,is a potential therapeutic target for overcoming TKI resistance in HCC.However,no studies on the expression of ARHGAP12 in HCC and its role in resistance to TKIs have been reported.AIM To unveil the expression of ARHGAP12 in HCC,its role in TKI resistance and its potential associated pathways.METHODS This study used single-cell RNA sequencing(scRNA-seq)to evaluate ARHGAP12 mRNA levels and explored its mechanisms through enrichment analysis.CellChat was used to investigate focal adhesion(FA)pathway regulation.We integrated bulk RNA data(RNA-seq and microarray),immunohistochemistry and proteomics to analyze ARHGAP12 mRNA and protein levels,correlating with clinical outcomes.We assessed ARHGAP12 expression in TKI-resistant HCC,integrated conventional HCC to explore its mechanism,identified intersecting FA pathway genes with scRNA-seq data and evaluated its response to TKI and immunotherapy.RESULTS ARHGAP12 mRNA was found to be highly expressed in malignant hepatocytes and to regulate FA.In malignant hepatocytes in high-score FA groups,MDK-[integrin alpha 6(ITGA6)+integrinβ-1(ITGB1)]showed specificity in ligand-receptor interactions.ARHGAP12 mRNA and protein were upregulated in bulk RNA,immunohistochemistry and proteomics,and higher expression was associated with a worse prognosis.ARHGAP12 was also found to be a TKI resistance gene that regulated the FA pathway.ITGB1 was identified as a crossover gene in the FA pathway in both scRNA-seq and bulk RNA.High expression of ARHGAP12 was associated with adverse reactions to sorafenib,cabozantinib and regorafenib,but not to immunotherapy.CONCLUSION ARHGAP12 expression is elevated in HCC and TKI-resistant HCC,and its regulatory role in FA may underlie the TKI-resistant phenotype.展开更多
Both hepatitis B virus X protein(HBx)and microRNA-221(miR-221)have been implicated in the development of hepatitis B virus(HBV)-related hepatocellular carcinoma(HCC).The present study demonstrates that HBx promotes HC...Both hepatitis B virus X protein(HBx)and microRNA-221(miR-221)have been implicated in the development of hepatitis B virus(HBV)-related hepatocellular carcinoma(HCC).The present study demonstrates that HBx promotes HCC cell proliferation via the C-X-C motif chemokine ligand 12-C-X-C chemokine receptor type 4(CXCL12-CXCR4)axis.We predict that HBx/miR-221-mediated CXCL12/CXCR4 signaling induces NKT cells to promote HBV-related HCC.Methods:After miR-221 mimic,miR-221 mimic negative control,miR-221 inhibitor,miR-221 inhibitor negative control were transfected into cells,the expression of CXCL12 and miR-221 was detected by qPCR and western blot.Then we constructed a stable HBV-HCC cell line.HBV-HCC cells were injected into the nude mice,thus a HBV-HCC mouse model was constructed.Q-PCR and western blot were used to detect the expression of HBx,miR-221,CXCL12 and CXCR4 in tumor tissues.The expression of CXCL12 was detected by immunohistochemistry,and the expression of CXCR4,CD3 and CD56 was detected by immunofluorescence.The levels of CXCL12,IL-2 and TNF-αin serum of mice were detected by ELISA.Sixty-one patients with HBV-related HCC,61 patients with HBV-related cirrhosis,61 patients with chronic hepatitis B(CHB)and 30 healthy people were enrolled.CXCL12,cytokine levels,and clinicopathological parameters were tested.Results:Hepatitis B virus X protein upregulates the expression of miR-221 and CXCL12 in lentivirus(LV5)-HBx-transfected HepG2 cells.HBx protein promotes HepG2 cell proliferation in vitro.HBx protein promoted tumor growth via the miR-221/CXCL12/CXCR4 pathway in a mouse tumor model.HBx protein upregulated natural killer T cell expression via the CXCR4/CXCL12 pathway to promote tumor growth.The data demonstrated a positive correlation between CXCL12 concentration with Cre levels and Child-Pugh scores.CXCL12 had an inferior diagnostic efficiency compared to IL-2 and IL-6 for HBV-related HCC.Conclusions:We present evidence that HBx/miR-221-mediated CXCL12/CXCR4 signaling induces NKT cells to promote HBV-related HCC.展开更多
BACKGROUND Long non-coding RNAs (lncRNAs) play important roles in many diseases, including hepatocellular carcinoma (HCC). Autophagy is a metabolic pathway that facilitates cancer cell survival in response to stress. ...BACKGROUND Long non-coding RNAs (lncRNAs) play important roles in many diseases, including hepatocellular carcinoma (HCC). Autophagy is a metabolic pathway that facilitates cancer cell survival in response to stress. The relationship between autophagy and the lncRNA-activated by transforming growth factor beta (lncRNA-ATB) in HCC remains unknown. AIM To explore the influence of lncRNA-ATB in regulating autophagy in HCC cells and the underlying mechanism. METHODS In the present study, we evaluated lncRNA-ATB expression in tumor and adjacent non-tumor tissues from 72 HCC cases by real-time PCR. We evaluated the role of lncRNA-ATB in the proliferation and clonogenicity of HCC cells in vitro. The effect of lncRNA-ATB on autophagy was determined using a LC3-GFP reporter and transmission electron microscopy. Furthermore, the mechanism by which lncRNA-ATB regulates autophagy was explored by immunofluorescence staining, RNA immunoprecipitation (RIP), and Western blot. RESULTS The expression of lncRNA-ATB was higher in HCC tissues than in normal liver tissues, and lncRNA-ATB expression was positively correlated with tumor size, TNM stage, and poorer survival of patients with HCC. Moreover, ectopic overexpression of lncRNA-ATB promoted cell proliferation and clonogenicnity of HCC cells in vitro. LncRNA-ATB promoted autophagy by activating Yesassociated protein (YAP). Moreover, lncRNA-ATB interacted with autophagy-related protein 5 (ATG5) mRNA and increased ATG5 expression. CONCLUSION LncRNA-ATB regulates autophagy by activating YAP and increasing ATG5 expression. Our data demonstrate a novel function for lncRNA-ATB in autophagy and suggest that lncRNA-ATB plays an important role in HCC.展开更多
BACKGROUND Pancreatic cancer is a highly invasive malignant tumor. Expression levels of the autophagy-related protein microtubule-associated protein 1 A/1 B-light chain 3(LC3) and perineural invasion(PNI) are closely ...BACKGROUND Pancreatic cancer is a highly invasive malignant tumor. Expression levels of the autophagy-related protein microtubule-associated protein 1 A/1 B-light chain 3(LC3) and perineural invasion(PNI) are closely related to its occurrence and development. Our previous results showed that the high expression of LC3 was positively correlated with PNI in the patients with pancreatic cancer. In this study, we further searched for differential genes involved in autophagy of pancreatic cancer by gene expression profiling and analyzed their biological functions in pancreatic cancer, which provides a theoretical basis for elucidating the pathophysiological mechanism of autophagy in pancreatic cancer and PNI.AIM To identify differentially expressed genes involved in pancreatic cancer autophagy and explore the pathogenesis at the molecular level.METHODS Two sets of gene expression profiles of pancreatic cancer/normal tissue(GSE16515 and GSE15471) were collected from the Gene Expression Omnibus.Significance analysis of microarrays algorithm was used to screen differentially expressed genes related to pancreatic cancer. Gene Ontology(GO) analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway analysis were used to analyze the functional enrichment of the differentially expressed genes. Protein interaction data containing only differentially expressed genes was downloaded from String database and screened. Module mining was carried out by Cytoscape software and ClusterOne plug-in. The interaction relationship between the modules was analyzed and the pivot nodes between the functional modules were determined according to the information of the functional modules and the data of reliable protein interaction network.RESULTS Based on the above two data sets of pancreatic tissue total gene expression, 6098 and 12928 differentially expressed genes were obtained by analysis of genes with higher phenotypic correlation. After extracting the intersection of the two differential gene sets, 4870 genes were determined. GO analysis showed that 14 significant functional items including negative regulation of protein ubiquitination were closely related to autophagy. A total of 986 differentially expressed genes were enriched in these functional items. After eliminating the autophagy related genes of human cancer cells which had been defined, 347 differentially expressed genes were obtained. KEGG pathway analysis showed that the pathways hsa04144 and hsa04020 were related to autophagy. In addition,65 clustering modules were screened after the protein interaction network was constructed based on String database, and module 32 contains the LC3 gene,which interacts with multiple autophagy-related genes. Moreover, ubiquitin C acts as a pivot node in functional modules to connect multiple modules related to pancreatic cancer and autophagy.CONCLUSION Three hundred and forty-seven genes associated with autophagy in human pancreatic cancer were concentrated, and a key gene ubiquitin C which is closely related to the occurrence of PNI was determined, suggesting that LC3 may influence the PNI and prognosis of pancreatic cancer through ubiquitin C.展开更多
Fibroids, also called leiomyomas or myomas, are communal tumors of the muscle or uterine wall that affect about 20% of females who are of reproductive age. They can look as if singly or in clusters, and they often cea...Fibroids, also called leiomyomas or myomas, are communal tumors of the muscle or uterine wall that affect about 20% of females who are of reproductive age. They can look as if singly or in clusters, and they often cease to grow after menopause. Fibroids can be classified as intramural, sub serosal, pedunculated, or submucosal based on where they are positioned in the uterus. Although fibroids are benign, they can grow quickly and cause a range of symptoms, such as pelvic pressure, heavy menstrual flow, and infertility. As a result, fibroids are a main reason behind hysterectomy surgeries. The majority of cases of breast cancer are ductal and lobular cancers, making it the second utmost common cancer in women international. Gene mutations like those in BRCA1 or BRCA2 knowingly raise the risk of breast and other cancers, typically with an earlier cancer onset. Cancer risk is influenced by a complex interplay of genetic abnormalities, environmental factors, and lifestyle selections. Further research into these relations is domineering. Although they are common in uterine leiomyomas, especially multiple leiomyomas, MED12 mutations do not significantly correlate with tumor size. These mutations have also been noticed in smooth muscle tumors and leiomyosarcomas, two other types of uterine cancer. The identification of MED12 mutations as the sole genetic abnormality originates in leiomyomas raises the opportunity of a role in the genesis of cancer. 10% - 15% of women who are of reproductive age have endometriosis, which grants serious difficulties because of its chronic nature and range of clinical symptoms. Even after effective surgeries, issues reoccur often, adding to the enormous financial burden. The effects of MED12 mutations have been experiential in recent studies examining the molecular causes of endometriosis-associated infertility, which have shown anomalies in cellular connections and signaling cascades. Computational techniques were used in this study to investigate LifeGreenTM’s potential to prevent uterine fibroids and breast cancer. The efficacy of LifeGreenTM as a preventive measure or a treatment for common gynecological matters was examined and modeled. We investigated the mechanisms underlying LifeGreenTM’s benefits in the treatment of uterine fibroids and breast cancer using computational techniques. Our research contributes to our understanding of its potential therapeutic benefits for women’s health.展开更多
基金Supported by National Natural Science Foundation of China,No.82260581Guangxi Zhuang Autonomous Region Health Committee Scientific Research Project,No.Z20201147+3 种基金Guangxi Medical University Education and Teaching Reform Project,No.2021XJGA02Undergraduate Teaching Reform Project of Guangxi Higher Education,No.2023JGB163Guangxi Medical University Teacher Teaching Ability Development Project,No.2202JFA20China Undergraduate Innovation and Entrepreneurship Training Program,No.S202310598170.
文摘BACKGROUND Hepatocellular carcinoma(HCC)is a major health challenge with high incidence and poor survival rates in China.Systemic therapies,particularly tyrosine kinase inhibitors(TKIs),are the first-line treatment for advanced HCC,but resistance is common.The Rho GTPase family member Rho GTPase activating protein 12(ARHGAP12),which regulates cell adhesion and invasion,is a potential therapeutic target for overcoming TKI resistance in HCC.However,no studies on the expression of ARHGAP12 in HCC and its role in resistance to TKIs have been reported.AIM To unveil the expression of ARHGAP12 in HCC,its role in TKI resistance and its potential associated pathways.METHODS This study used single-cell RNA sequencing(scRNA-seq)to evaluate ARHGAP12 mRNA levels and explored its mechanisms through enrichment analysis.CellChat was used to investigate focal adhesion(FA)pathway regulation.We integrated bulk RNA data(RNA-seq and microarray),immunohistochemistry and proteomics to analyze ARHGAP12 mRNA and protein levels,correlating with clinical outcomes.We assessed ARHGAP12 expression in TKI-resistant HCC,integrated conventional HCC to explore its mechanism,identified intersecting FA pathway genes with scRNA-seq data and evaluated its response to TKI and immunotherapy.RESULTS ARHGAP12 mRNA was found to be highly expressed in malignant hepatocytes and to regulate FA.In malignant hepatocytes in high-score FA groups,MDK-[integrin alpha 6(ITGA6)+integrinβ-1(ITGB1)]showed specificity in ligand-receptor interactions.ARHGAP12 mRNA and protein were upregulated in bulk RNA,immunohistochemistry and proteomics,and higher expression was associated with a worse prognosis.ARHGAP12 was also found to be a TKI resistance gene that regulated the FA pathway.ITGB1 was identified as a crossover gene in the FA pathway in both scRNA-seq and bulk RNA.High expression of ARHGAP12 was associated with adverse reactions to sorafenib,cabozantinib and regorafenib,but not to immunotherapy.CONCLUSION ARHGAP12 expression is elevated in HCC and TKI-resistant HCC,and its regulatory role in FA may underlie the TKI-resistant phenotype.
基金supported by the National Natural Science Foundation of Chongqing,China(No.cstc2019jcyj-msxm0314 of Yishu Tang)the National Key R&D Program of China(No.2017YFC0909902 of Yun Xia)the Natural Science Foundation of China(No.81501818 of Yishu Tang)。
文摘Both hepatitis B virus X protein(HBx)and microRNA-221(miR-221)have been implicated in the development of hepatitis B virus(HBV)-related hepatocellular carcinoma(HCC).The present study demonstrates that HBx promotes HCC cell proliferation via the C-X-C motif chemokine ligand 12-C-X-C chemokine receptor type 4(CXCL12-CXCR4)axis.We predict that HBx/miR-221-mediated CXCL12/CXCR4 signaling induces NKT cells to promote HBV-related HCC.Methods:After miR-221 mimic,miR-221 mimic negative control,miR-221 inhibitor,miR-221 inhibitor negative control were transfected into cells,the expression of CXCL12 and miR-221 was detected by qPCR and western blot.Then we constructed a stable HBV-HCC cell line.HBV-HCC cells were injected into the nude mice,thus a HBV-HCC mouse model was constructed.Q-PCR and western blot were used to detect the expression of HBx,miR-221,CXCL12 and CXCR4 in tumor tissues.The expression of CXCL12 was detected by immunohistochemistry,and the expression of CXCR4,CD3 and CD56 was detected by immunofluorescence.The levels of CXCL12,IL-2 and TNF-αin serum of mice were detected by ELISA.Sixty-one patients with HBV-related HCC,61 patients with HBV-related cirrhosis,61 patients with chronic hepatitis B(CHB)and 30 healthy people were enrolled.CXCL12,cytokine levels,and clinicopathological parameters were tested.Results:Hepatitis B virus X protein upregulates the expression of miR-221 and CXCL12 in lentivirus(LV5)-HBx-transfected HepG2 cells.HBx protein promotes HepG2 cell proliferation in vitro.HBx protein promoted tumor growth via the miR-221/CXCL12/CXCR4 pathway in a mouse tumor model.HBx protein upregulated natural killer T cell expression via the CXCR4/CXCL12 pathway to promote tumor growth.The data demonstrated a positive correlation between CXCL12 concentration with Cre levels and Child-Pugh scores.CXCL12 had an inferior diagnostic efficiency compared to IL-2 and IL-6 for HBV-related HCC.Conclusions:We present evidence that HBx/miR-221-mediated CXCL12/CXCR4 signaling induces NKT cells to promote HBV-related HCC.
文摘BACKGROUND Long non-coding RNAs (lncRNAs) play important roles in many diseases, including hepatocellular carcinoma (HCC). Autophagy is a metabolic pathway that facilitates cancer cell survival in response to stress. The relationship between autophagy and the lncRNA-activated by transforming growth factor beta (lncRNA-ATB) in HCC remains unknown. AIM To explore the influence of lncRNA-ATB in regulating autophagy in HCC cells and the underlying mechanism. METHODS In the present study, we evaluated lncRNA-ATB expression in tumor and adjacent non-tumor tissues from 72 HCC cases by real-time PCR. We evaluated the role of lncRNA-ATB in the proliferation and clonogenicity of HCC cells in vitro. The effect of lncRNA-ATB on autophagy was determined using a LC3-GFP reporter and transmission electron microscopy. Furthermore, the mechanism by which lncRNA-ATB regulates autophagy was explored by immunofluorescence staining, RNA immunoprecipitation (RIP), and Western blot. RESULTS The expression of lncRNA-ATB was higher in HCC tissues than in normal liver tissues, and lncRNA-ATB expression was positively correlated with tumor size, TNM stage, and poorer survival of patients with HCC. Moreover, ectopic overexpression of lncRNA-ATB promoted cell proliferation and clonogenicnity of HCC cells in vitro. LncRNA-ATB promoted autophagy by activating Yesassociated protein (YAP). Moreover, lncRNA-ATB interacted with autophagy-related protein 5 (ATG5) mRNA and increased ATG5 expression. CONCLUSION LncRNA-ATB regulates autophagy by activating YAP and increasing ATG5 expression. Our data demonstrate a novel function for lncRNA-ATB in autophagy and suggest that lncRNA-ATB plays an important role in HCC.
基金Supported by the National Natural Science Foundation of China,No.U1504815 and No.U1504808
文摘BACKGROUND Pancreatic cancer is a highly invasive malignant tumor. Expression levels of the autophagy-related protein microtubule-associated protein 1 A/1 B-light chain 3(LC3) and perineural invasion(PNI) are closely related to its occurrence and development. Our previous results showed that the high expression of LC3 was positively correlated with PNI in the patients with pancreatic cancer. In this study, we further searched for differential genes involved in autophagy of pancreatic cancer by gene expression profiling and analyzed their biological functions in pancreatic cancer, which provides a theoretical basis for elucidating the pathophysiological mechanism of autophagy in pancreatic cancer and PNI.AIM To identify differentially expressed genes involved in pancreatic cancer autophagy and explore the pathogenesis at the molecular level.METHODS Two sets of gene expression profiles of pancreatic cancer/normal tissue(GSE16515 and GSE15471) were collected from the Gene Expression Omnibus.Significance analysis of microarrays algorithm was used to screen differentially expressed genes related to pancreatic cancer. Gene Ontology(GO) analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway analysis were used to analyze the functional enrichment of the differentially expressed genes. Protein interaction data containing only differentially expressed genes was downloaded from String database and screened. Module mining was carried out by Cytoscape software and ClusterOne plug-in. The interaction relationship between the modules was analyzed and the pivot nodes between the functional modules were determined according to the information of the functional modules and the data of reliable protein interaction network.RESULTS Based on the above two data sets of pancreatic tissue total gene expression, 6098 and 12928 differentially expressed genes were obtained by analysis of genes with higher phenotypic correlation. After extracting the intersection of the two differential gene sets, 4870 genes were determined. GO analysis showed that 14 significant functional items including negative regulation of protein ubiquitination were closely related to autophagy. A total of 986 differentially expressed genes were enriched in these functional items. After eliminating the autophagy related genes of human cancer cells which had been defined, 347 differentially expressed genes were obtained. KEGG pathway analysis showed that the pathways hsa04144 and hsa04020 were related to autophagy. In addition,65 clustering modules were screened after the protein interaction network was constructed based on String database, and module 32 contains the LC3 gene,which interacts with multiple autophagy-related genes. Moreover, ubiquitin C acts as a pivot node in functional modules to connect multiple modules related to pancreatic cancer and autophagy.CONCLUSION Three hundred and forty-seven genes associated with autophagy in human pancreatic cancer were concentrated, and a key gene ubiquitin C which is closely related to the occurrence of PNI was determined, suggesting that LC3 may influence the PNI and prognosis of pancreatic cancer through ubiquitin C.
文摘Fibroids, also called leiomyomas or myomas, are communal tumors of the muscle or uterine wall that affect about 20% of females who are of reproductive age. They can look as if singly or in clusters, and they often cease to grow after menopause. Fibroids can be classified as intramural, sub serosal, pedunculated, or submucosal based on where they are positioned in the uterus. Although fibroids are benign, they can grow quickly and cause a range of symptoms, such as pelvic pressure, heavy menstrual flow, and infertility. As a result, fibroids are a main reason behind hysterectomy surgeries. The majority of cases of breast cancer are ductal and lobular cancers, making it the second utmost common cancer in women international. Gene mutations like those in BRCA1 or BRCA2 knowingly raise the risk of breast and other cancers, typically with an earlier cancer onset. Cancer risk is influenced by a complex interplay of genetic abnormalities, environmental factors, and lifestyle selections. Further research into these relations is domineering. Although they are common in uterine leiomyomas, especially multiple leiomyomas, MED12 mutations do not significantly correlate with tumor size. These mutations have also been noticed in smooth muscle tumors and leiomyosarcomas, two other types of uterine cancer. The identification of MED12 mutations as the sole genetic abnormality originates in leiomyomas raises the opportunity of a role in the genesis of cancer. 10% - 15% of women who are of reproductive age have endometriosis, which grants serious difficulties because of its chronic nature and range of clinical symptoms. Even after effective surgeries, issues reoccur often, adding to the enormous financial burden. The effects of MED12 mutations have been experiential in recent studies examining the molecular causes of endometriosis-associated infertility, which have shown anomalies in cellular connections and signaling cascades. Computational techniques were used in this study to investigate LifeGreenTM’s potential to prevent uterine fibroids and breast cancer. The efficacy of LifeGreenTM as a preventive measure or a treatment for common gynecological matters was examined and modeled. We investigated the mechanisms underlying LifeGreenTM’s benefits in the treatment of uterine fibroids and breast cancer using computational techniques. Our research contributes to our understanding of its potential therapeutic benefits for women’s health.