Einstein–Podolsky–Rosen(EPR) steering is an example of nontrivial quantum nonlocality and characteristic in the non-classical world.The directivity(or asymmetry) is a fascinating trait of EPR steering,and it is diff...Einstein–Podolsky–Rosen(EPR) steering is an example of nontrivial quantum nonlocality and characteristic in the non-classical world.The directivity(or asymmetry) is a fascinating trait of EPR steering,and it is different from other quantum nonlocalities.Here,we consider the strategy in which two atoms compose a two-qubit X state,and the two atoms are owned by Alice and Bob,respectively.The atom of Alice suffers from a reservoir,and the atom of Bob couples with a bit flip channel.The influences of auxiliary qubits on EPR steering and its directions are revealed by means of the entropy uncertainty relation.The results indicate that EPR steering declines with growing time t when adding fewer auxiliary qubits.The EPR steering behaves as damped oscillation when introducing more auxiliary qubits in the strong coupling regime.In the weak coupling regime,the EPR steering monotonously decreases as t increases when coupling auxiliary qubits.The increases in auxiliary qubits are responsible for the fact that the steerability from Alice to Bob(or from Bob to Alice) can be more effectively revealed.Notably,the introductions of more auxiliary qubits can change the situation that steerability from Alice to Bob is certain to a situation in which steerability from Bob to Alice is certain.展开更多
Adding nanoparticles can significantly improve the tribological properties of lubricants.However,there is a lack of understanding regarding the influence of nanoparticle shape on lubrication performance.In this work,t...Adding nanoparticles can significantly improve the tribological properties of lubricants.However,there is a lack of understanding regarding the influence of nanoparticle shape on lubrication performance.In this work,the influence of diamond nanoparticles(DNPs)on the tribological properties of lubricants is investigated through friction experiments.Additionally,the friction characteristics of lubricants regarding ellipsoidal particle shape are investigated using molecular dynamics(MD)simulations.The results show that DNPs can drastically lower the lubricant's friction coefficientμfrom 0.21 to 0.117.The shearing process reveals that as the aspect ratio(α)of the nanoparticles approaches 1.0,the friction performance improves,and wear on the wall diminishes.At the same time,the shape of the nanoparticles tends to be spherical.When 0.85≤α≤1.0,rolling is ellipsoidal particles'main form of motion,and the friction force changes according to a periodic sinusoidal law.In the range of 0.80≤α<0.85,ellipsoidal particles primarily exhibit sliding as the dominant movement mode.Asαdecreases within this range,the friction force progressively increases.The friction coefficientμcalculated through MD simulation is 0.128,which is consistent with the experimental data.展开更多
This paper develops a generalized scalar auxiliary variable(SAV)method for the time-dependent Ginzburg-Landau equations.The backward Euler method is used for discretizing the temporal derivative of the time-dependent ...This paper develops a generalized scalar auxiliary variable(SAV)method for the time-dependent Ginzburg-Landau equations.The backward Euler method is used for discretizing the temporal derivative of the time-dependent Ginzburg-Landau equations.In this method,the system is decoupled and linearized to avoid solving the non-linear equation at each step.The theoretical analysis proves that the generalized SAV method can preserve the maximum bound principle and energy stability,and this is confirmed by the numerical result,and also shows that the numerical algorithm is stable.展开更多
Purpose–Auxiliary power system is an indispensable part of the train;the auxiliary systems of both electric locomotives and EMUs mainly are powered by one of the two ways,which are either from auxiliary windings of t...Purpose–Auxiliary power system is an indispensable part of the train;the auxiliary systems of both electric locomotives and EMUs mainly are powered by one of the two ways,which are either from auxiliary windings of traction transformers or from DC-link voltage of traction converters.Powered by DC-link voltage of traction converters,the auxiliary systems were maintained of uninterruptable power supply with energy from electric braking.Meanwhile,powered by traction transformers,the auxiliary systems were always out of power while passing the neutral section of power supply grid and control system is powered by battery at this time.Design/methodology/approach–Uninterrupted power supply of auxiliary power system powered by auxiliary winding of traction transformer was studied.Failure reasons why previous solutions cannot be realized are analyzed.An uninterruptable power supply scheme for the auxiliary systems powered by auxiliary windings of traction transformers is proposed in this paper.The validity of the proposed scheme is verified by simulation and experimental results and on-site operation of an upgraded HXD3C type locomotive.This scheme is attractive for upgrading practical locomotives with the auxiliary systems powered by auxiliary windings of traction transformers.Findings–This scheme regenerates braking power supplied to auxiliary windings of traction transformers while a locomotive runs in the neutral section of the power supply grid.Control objectives of uninterrupted power supply technology are proposed,which are no overvoltage,no overcurrent and uninterrupted power supply.Originality/value–The control strategies of the scheme ensure both overvoltage free and inrush current free when a locomotive enters or leaves the neutral section.Furthermore,this scheme is cost low by employing updated control strategy of software and add both the two current sensors and two connection wires of hardware.展开更多
From July 16th to 19th,2024,2024 National Practical Technical Training on Textile Printing and Dyeing Auxiliary Preparation,organized by China Research Institute of Daily Chemical and National Engineering Research Cen...From July 16th to 19th,2024,2024 National Practical Technical Training on Textile Printing and Dyeing Auxiliary Preparation,organized by China Research Institute of Daily Chemical and National Engineering Research Center for Surfactants,and co-organized by the Dyeing and Finishing Technology Research Institute of Zhejiang Fashion Institute of Technology and the High Fastness Plant-based Dye Research Base of China Textile Engineering Society,was held successfully in Shangyu,Zhejiang Province,with 92 representatives from 64 work units from all over China.展开更多
The developed auxiliary software serves to simplify, standardize and facilitate the software loading of the structural organization of a complex technological system, as well as its further manipulation within the pro...The developed auxiliary software serves to simplify, standardize and facilitate the software loading of the structural organization of a complex technological system, as well as its further manipulation within the process of solving the considered technological system. Its help can be especially useful in the case of a complex structural organization of a technological system with a large number of different functional elements grouped into several technological subsystems. This paper presents the results of its application for a special complex technological system related to the reference steam block for the combined production of heat and electricity.展开更多
Constrained multi-objective optimization problems(CMOPs) include the optimization of objective functions and the satisfaction of constraint conditions, which challenge the solvers.To solve CMOPs, constrained multi-obj...Constrained multi-objective optimization problems(CMOPs) include the optimization of objective functions and the satisfaction of constraint conditions, which challenge the solvers.To solve CMOPs, constrained multi-objective evolutionary algorithms(CMOEAs) have been developed. However, most of them tend to converge into local areas due to the loss of diversity. Evolutionary multitasking(EMT) is new model of solving complex optimization problems, through the knowledge transfer between the source task and other related tasks. Inspired by EMT, this paper develops a new EMT-based CMOEA to solve CMOPs, in which the main task, a global auxiliary task, and a local auxiliary task are created and optimized by one specific population respectively. The main task focuses on finding the feasible Pareto front(PF), and global and local auxiliary tasks are used to respectively enhance global and local diversity. Moreover, the global auxiliary task is used to implement the global search by ignoring constraints, so as to help the population of the main task pass through infeasible obstacles. The local auxiliary task is used to provide local diversity around the population of the main task, so as to exploit promising regions. Through the knowledge transfer among the three tasks, the search ability of the population of the main task will be significantly improved. Compared with other state-of-the-art CMOEAs, the experimental results on three benchmark test suites demonstrate the superior or competitive performance of the proposed CMOEA.展开更多
We consider the so-called Thomson problem which refers to finding the equilibrium distribution of a finite number of mutually repelling point charges on the surface of a sphere, but for the case where the sphere is re...We consider the so-called Thomson problem which refers to finding the equilibrium distribution of a finite number of mutually repelling point charges on the surface of a sphere, but for the case where the sphere is replaced by a spheroid or ellipsoid. To get started, we first consider the problem in two dimensions, with point charges on circles (for which the equilibrium distribution is intuitively obvious) and ellipses. We then generalize the approach to the three-dimensional case of an ellipsoid. The method we use is to begin with a random distribution of charges on the surface and allow each point charge to move tangentially to the surface due to the sum of all Coulomb forces it feels from the other charges. Deriving the proper equations of motion requires using a projection operator to project the total force on each point charge onto the tangent plane of the surface. The position vectors then evolve and find their final equilibrium distribution naturally. For the case of ellipses and ellipsoids or spheroids, we find that multiple distinct equilibria are possible for certain numbers of charges, depending on the starting conditions. We characterize these based on their total potential energies. Some of the equilibria found turn out to represent local minima in the potential energy landscape, while others represent the global minimum. We devise a method based on comparing the moment-of-inertia tensors of the final configurations to distinguish them from one another.展开更多
A quantum steering ellipsoid(QSE)is a visual characterization for bipartite qubit systems,and it is also a novel avenue for describing and detecting quantum correlations.Herein,by using a QSE,we visualize and witness ...A quantum steering ellipsoid(QSE)is a visual characterization for bipartite qubit systems,and it is also a novel avenue for describing and detecting quantum correlations.Herein,by using a QSE,we visualize and witness the first-order coherence(FOC),Bell nonlocality(BN)and purity under non-inertial frames.Also,the collective influences of the depolarizing channel and the non-coherence-generating channel(NCGC)on the FOC,BN and purity are investigated in the QSE formalism.The results reveal that the distance from the center of the QSE to the center of the Bloch sphere visualizes the FOC of a bipartite system,the lengths of the QSE semiaxis visualize the BN,and the QSE's shape and position dominate the purity of the system.One can capture the FOC,BN and purity via the shape and position of the QSE in the non-inertial frame.The depolarizing channel(the NCGC)gives rise to the shrinking and degradation(the periodical oscillation)of the QSE.One can use these traits to visually characterize and detect the FOC,BN and purity under the influence of external noise.Of particular note is that the condition for the QSE to achieve the center of the Bloch sphere cannot be influenced by the depolarizing channel and the NCGC.The characterization shows that the conditions for the disappearance of the FOC are invariant under the additional influences of the depolarizing channel and NCGC.展开更多
To promote the development of global carbon neutrality,perovskite solar cells(PSCs)have become a research hotspot in related fields.How to obtain PSCs with expected performance and explore the potential factors affect...To promote the development of global carbon neutrality,perovskite solar cells(PSCs)have become a research hotspot in related fields.How to obtain PSCs with expected performance and explore the potential factors affecting device performance are the research priorities in related fields.Although some classical computational methods can facilitate material development,they typically require complex mathematical approximations and manual feature screening processes,which have certain subjectivity and one-sidedness,limiting the performance of the model.In order to alleviate the above challenges,this paper proposes a machine learning(ML)model based on neural networks.The model can assist both PSCs design and analysis of their potential mechanism,demonstrating enhanced and comprehensive auxiliary capabilities.To make the model have higher feasibility and fit the real experimental process more closely,this paper collects the corresponding real experimental data from numerous research papers to develop the model.Compared with other classical ML methods,the proposed model achieved better overall performance.Regarding analysis of underlying mechanism,the relevant laws explored by the model are consistent with the actual experiment results of existing articles.The model exhibits great potential to discover complex laws that are difficult for humans to discover directly.In addition,we also fabricated PSCs to verify the guidance ability of the model in this paper for real experiments.Eventually,the model achieved acceptable results.This work provides new insights into integrating ML methods and PSC design techniques,as well as bridging photovoltaic power generation technology and other fields.展开更多
Accurate and seamless auxiliary services in the power market can guarantee smooth and continuous power system operation. China’s new round of power system reform has entered a critical period, and reform implementati...Accurate and seamless auxiliary services in the power market can guarantee smooth and continuous power system operation. China’s new round of power system reform has entered a critical period, and reform implementation requires comprehensive improvements in the maturity of the supporting auxiliary service market. This study reviews the development status and evolution path of the European unified power market and the US regional power market, provides experience for the development of China’s regional power market, then identifies the key influencing factors of auxiliary service trading mechanism design in regional power markets. To analyze the rationality of the auxiliary service trading evaluation index, this paper established an evaluation model for assessing regional power markets. Using combined weight optimization, the gray correlation TOPSIS method was applied to comprehensively evaluate auxiliary service trading in the regional power market. Finally, the application of the proposed evaluation method was briefly analyzed to examine four regional power markets in China and evaluate the effectiveness of current market construction in different regions and provide suggestions for future market construction.展开更多
To enhance the output torque and minimize the torque ripple of coaxial magnetic gear(CMG),a novel auxiliary flux modulator CMG with unequal magnetic poles is proposed.This design incorporates an inner rotor with an as...To enhance the output torque and minimize the torque ripple of coaxial magnetic gear(CMG),a novel auxiliary flux modulator CMG with unequal magnetic poles is proposed.This design incorporates an inner rotor with an asymmetric sector and a trapezoidal combined N-S pole structure,featuring Halbach arrays for the arrangement of permanent magnets(PMs).The outer rotor PMs adopt a Spoke-type configuration.To optimize the CMG for high output torque and low torque ripple,a sensitivity analysis is conducted to identify key size parameters that significantly influence the optimization objectives.Based on the sensitivity hierarchy of these parameters,a multi-objective optimization analysis is performed using a genetic algorithm(GA)to determine the optimal structural parameter values of the CMG.In addition,a coaxial magnetic gear(CMG)topology with 4 inner and 17 outer pole pairs is adopted,and the parametric model is established.Finally,the electromagnetic properties of the CMG are evaluated using the finite element method.The results indicate a remarkable reduction in torque ripple,specifically by 46.15%.展开更多
The classification of lung nodules is a challenging problem as the visual analysis of the nodules and non-nodules revealed homogenous textural patterns.In this work,an Auxiliary Classifier(AC)-Generative Adversarial Net...The classification of lung nodules is a challenging problem as the visual analysis of the nodules and non-nodules revealed homogenous textural patterns.In this work,an Auxiliary Classifier(AC)-Generative Adversarial Network(GAN)based Lung Cancer Classification(LCC)system is developed.The pro-posed AC-GAN-LCC system consists of three modules;preprocessing,Lungs Region Detection(LRD),and AC-GAN classification.A Wienerfilter is employed in the preprocessing module to remove the Gaussian noise.In the LRD module,only the lung regions(left and right lungs)are detected using itera-tive thresholding and morphological operations.In order to extract the lung region only,floodfilling and background subtraction.The detected lung regions are fed to the AC-GAN classifier to detect the nodules.It classifies the nodules into one of the two classes,i.e.,binary classification(such as nodules or non-nodules).The AC-GAN is the extended version of the conditional GAN that predicts the label of a given image.Three different optimization techniques,adaptive gradient optimi-zation,root mean square propagation optimization,and Adam optimization are employed for optimizing the AC-GAN architecture.The proposed AC-GAN-LCC system is evaluated on the Lung Image Database Consortium(LIDC)data-base Computed Tomography(CT)scan images.The proposed AC-GAN-LCC system classifies∼15000 CT slices(7310 non-nodules and 7685 nodules).It pro-vides an overall accuracy of 98.8%on the LIDC database using Adam optimiza-tion by a 10-fold cross-validation approach.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.12175001)the Key Project of Natural Science Research of West Anhui University(Grant No.WXZR202311)+7 种基金the Natural Science Research Key Project of Education Department of Anhui Province of China(Grant Nos.KJ2021A0943,2022AH051681,and 2023AH052648)the Open Fund of Anhui Undergrowth Crop Intelligent Equipment Engineering Research Center(Grant No.AUCIEERC-2022-01)Anhui Undergrowth Crop Intelligent Equipment Engineering Research Center(Grant No.2022AH010091)the University Synergy Innovation Program of Anhui Province(Grant No.GXXT-2021-026)the Anhui Provincial Natural Science Foundation(Grant Nos.2108085MA18 and 2008085MA20)Key Project of Program for Excellent Young Talents of Anhui Universities(Grant No.gxyq ZD2019042)the open project of the Key Laboratory of Functional Materials and Devices for Informatics of Anhui Higher Education Institutes(Grant No.FMDI202106)the research start-up funding project of High Level Talent of West Anhui University(Grant No.WGKQ2021048)。
文摘Einstein–Podolsky–Rosen(EPR) steering is an example of nontrivial quantum nonlocality and characteristic in the non-classical world.The directivity(or asymmetry) is a fascinating trait of EPR steering,and it is different from other quantum nonlocalities.Here,we consider the strategy in which two atoms compose a two-qubit X state,and the two atoms are owned by Alice and Bob,respectively.The atom of Alice suffers from a reservoir,and the atom of Bob couples with a bit flip channel.The influences of auxiliary qubits on EPR steering and its directions are revealed by means of the entropy uncertainty relation.The results indicate that EPR steering declines with growing time t when adding fewer auxiliary qubits.The EPR steering behaves as damped oscillation when introducing more auxiliary qubits in the strong coupling regime.In the weak coupling regime,the EPR steering monotonously decreases as t increases when coupling auxiliary qubits.The increases in auxiliary qubits are responsible for the fact that the steerability from Alice to Bob(or from Bob to Alice) can be more effectively revealed.Notably,the introductions of more auxiliary qubits can change the situation that steerability from Alice to Bob is certain to a situation in which steerability from Bob to Alice is certain.
基金Supported by National Natural Science Foundation of China (Grant No.52275178)Fujian industry university cooperation project (Grant No.2020H6025)。
文摘Adding nanoparticles can significantly improve the tribological properties of lubricants.However,there is a lack of understanding regarding the influence of nanoparticle shape on lubrication performance.In this work,the influence of diamond nanoparticles(DNPs)on the tribological properties of lubricants is investigated through friction experiments.Additionally,the friction characteristics of lubricants regarding ellipsoidal particle shape are investigated using molecular dynamics(MD)simulations.The results show that DNPs can drastically lower the lubricant's friction coefficientμfrom 0.21 to 0.117.The shearing process reveals that as the aspect ratio(α)of the nanoparticles approaches 1.0,the friction performance improves,and wear on the wall diminishes.At the same time,the shape of the nanoparticles tends to be spherical.When 0.85≤α≤1.0,rolling is ellipsoidal particles'main form of motion,and the friction force changes according to a periodic sinusoidal law.In the range of 0.80≤α<0.85,ellipsoidal particles primarily exhibit sliding as the dominant movement mode.Asαdecreases within this range,the friction force progressively increases.The friction coefficientμcalculated through MD simulation is 0.128,which is consistent with the experimental data.
基金supported by the National Natural Science Foundation of China(12126318,12126302).
文摘This paper develops a generalized scalar auxiliary variable(SAV)method for the time-dependent Ginzburg-Landau equations.The backward Euler method is used for discretizing the temporal derivative of the time-dependent Ginzburg-Landau equations.In this method,the system is decoupled and linearized to avoid solving the non-linear equation at each step.The theoretical analysis proves that the generalized SAV method can preserve the maximum bound principle and energy stability,and this is confirmed by the numerical result,and also shows that the numerical algorithm is stable.
文摘Purpose–Auxiliary power system is an indispensable part of the train;the auxiliary systems of both electric locomotives and EMUs mainly are powered by one of the two ways,which are either from auxiliary windings of traction transformers or from DC-link voltage of traction converters.Powered by DC-link voltage of traction converters,the auxiliary systems were maintained of uninterruptable power supply with energy from electric braking.Meanwhile,powered by traction transformers,the auxiliary systems were always out of power while passing the neutral section of power supply grid and control system is powered by battery at this time.Design/methodology/approach–Uninterrupted power supply of auxiliary power system powered by auxiliary winding of traction transformer was studied.Failure reasons why previous solutions cannot be realized are analyzed.An uninterruptable power supply scheme for the auxiliary systems powered by auxiliary windings of traction transformers is proposed in this paper.The validity of the proposed scheme is verified by simulation and experimental results and on-site operation of an upgraded HXD3C type locomotive.This scheme is attractive for upgrading practical locomotives with the auxiliary systems powered by auxiliary windings of traction transformers.Findings–This scheme regenerates braking power supplied to auxiliary windings of traction transformers while a locomotive runs in the neutral section of the power supply grid.Control objectives of uninterrupted power supply technology are proposed,which are no overvoltage,no overcurrent and uninterrupted power supply.Originality/value–The control strategies of the scheme ensure both overvoltage free and inrush current free when a locomotive enters or leaves the neutral section.Furthermore,this scheme is cost low by employing updated control strategy of software and add both the two current sensors and two connection wires of hardware.
文摘From July 16th to 19th,2024,2024 National Practical Technical Training on Textile Printing and Dyeing Auxiliary Preparation,organized by China Research Institute of Daily Chemical and National Engineering Research Center for Surfactants,and co-organized by the Dyeing and Finishing Technology Research Institute of Zhejiang Fashion Institute of Technology and the High Fastness Plant-based Dye Research Base of China Textile Engineering Society,was held successfully in Shangyu,Zhejiang Province,with 92 representatives from 64 work units from all over China.
文摘The developed auxiliary software serves to simplify, standardize and facilitate the software loading of the structural organization of a complex technological system, as well as its further manipulation within the process of solving the considered technological system. Its help can be especially useful in the case of a complex structural organization of a technological system with a large number of different functional elements grouped into several technological subsystems. This paper presents the results of its application for a special complex technological system related to the reference steam block for the combined production of heat and electricity.
基金supported in part by the National Natural Science Fund for Outstanding Young Scholars of China (61922072)the National Natural Science Foundation of China (62176238, 61806179, 61876169, 61976237)+2 种基金China Postdoctoral Science Foundation (2020M682347)the Training Program of Young Backbone Teachers in Colleges and Universities in Henan Province (2020GGJS006)Henan Provincial Young Talents Lifting Project (2021HYTP007)。
文摘Constrained multi-objective optimization problems(CMOPs) include the optimization of objective functions and the satisfaction of constraint conditions, which challenge the solvers.To solve CMOPs, constrained multi-objective evolutionary algorithms(CMOEAs) have been developed. However, most of them tend to converge into local areas due to the loss of diversity. Evolutionary multitasking(EMT) is new model of solving complex optimization problems, through the knowledge transfer between the source task and other related tasks. Inspired by EMT, this paper develops a new EMT-based CMOEA to solve CMOPs, in which the main task, a global auxiliary task, and a local auxiliary task are created and optimized by one specific population respectively. The main task focuses on finding the feasible Pareto front(PF), and global and local auxiliary tasks are used to respectively enhance global and local diversity. Moreover, the global auxiliary task is used to implement the global search by ignoring constraints, so as to help the population of the main task pass through infeasible obstacles. The local auxiliary task is used to provide local diversity around the population of the main task, so as to exploit promising regions. Through the knowledge transfer among the three tasks, the search ability of the population of the main task will be significantly improved. Compared with other state-of-the-art CMOEAs, the experimental results on three benchmark test suites demonstrate the superior or competitive performance of the proposed CMOEA.
文摘We consider the so-called Thomson problem which refers to finding the equilibrium distribution of a finite number of mutually repelling point charges on the surface of a sphere, but for the case where the sphere is replaced by a spheroid or ellipsoid. To get started, we first consider the problem in two dimensions, with point charges on circles (for which the equilibrium distribution is intuitively obvious) and ellipses. We then generalize the approach to the three-dimensional case of an ellipsoid. The method we use is to begin with a random distribution of charges on the surface and allow each point charge to move tangentially to the surface due to the sum of all Coulomb forces it feels from the other charges. Deriving the proper equations of motion requires using a projection operator to project the total force on each point charge onto the tangent plane of the surface. The position vectors then evolve and find their final equilibrium distribution naturally. For the case of ellipses and ellipsoids or spheroids, we find that multiple distinct equilibria are possible for certain numbers of charges, depending on the starting conditions. We characterize these based on their total potential energies. Some of the equilibria found turn out to represent local minima in the potential energy landscape, while others represent the global minimum. We devise a method based on comparing the moment-of-inertia tensors of the final configurations to distinguish them from one another.
基金Project supported by the National Natural Science Foundation of China(Grant No.12175001)the Natural Science Research Key Project of the Education Department of Anhui Province of China(Grant No.KJ2021A0943)+3 种基金the Research Start-up Funding Project of High Level Talent of West Anhui University(Grant No.WGKQ2021048)an Open Project of the Key Laboratory of Functional Materials and Devices for Informatics of Anhui Higher Education Institutes(Grant No.FMDI202106)the University Synergy Innovation Program of Anhui Province(Grant No.GXXT-2021-026)the Anhui Provincial Natural Science Foundation(Grant Nos.2108085MA18 and 2008085MA20)。
文摘A quantum steering ellipsoid(QSE)is a visual characterization for bipartite qubit systems,and it is also a novel avenue for describing and detecting quantum correlations.Herein,by using a QSE,we visualize and witness the first-order coherence(FOC),Bell nonlocality(BN)and purity under non-inertial frames.Also,the collective influences of the depolarizing channel and the non-coherence-generating channel(NCGC)on the FOC,BN and purity are investigated in the QSE formalism.The results reveal that the distance from the center of the QSE to the center of the Bloch sphere visualizes the FOC of a bipartite system,the lengths of the QSE semiaxis visualize the BN,and the QSE's shape and position dominate the purity of the system.One can capture the FOC,BN and purity via the shape and position of the QSE in the non-inertial frame.The depolarizing channel(the NCGC)gives rise to the shrinking and degradation(the periodical oscillation)of the QSE.One can use these traits to visually characterize and detect the FOC,BN and purity under the influence of external noise.Of particular note is that the condition for the QSE to achieve the center of the Bloch sphere cannot be influenced by the depolarizing channel and the NCGC.The characterization shows that the conditions for the disappearance of the FOC are invariant under the additional influences of the depolarizing channel and NCGC.
基金financially supported by the National Natural Science Foundation of China(NSFC)project(Authorization Number:61771261)。
文摘To promote the development of global carbon neutrality,perovskite solar cells(PSCs)have become a research hotspot in related fields.How to obtain PSCs with expected performance and explore the potential factors affecting device performance are the research priorities in related fields.Although some classical computational methods can facilitate material development,they typically require complex mathematical approximations and manual feature screening processes,which have certain subjectivity and one-sidedness,limiting the performance of the model.In order to alleviate the above challenges,this paper proposes a machine learning(ML)model based on neural networks.The model can assist both PSCs design and analysis of their potential mechanism,demonstrating enhanced and comprehensive auxiliary capabilities.To make the model have higher feasibility and fit the real experimental process more closely,this paper collects the corresponding real experimental data from numerous research papers to develop the model.Compared with other classical ML methods,the proposed model achieved better overall performance.Regarding analysis of underlying mechanism,the relevant laws explored by the model are consistent with the actual experiment results of existing articles.The model exhibits great potential to discover complex laws that are difficult for humans to discover directly.In addition,we also fabricated PSCs to verify the guidance ability of the model in this paper for real experiments.Eventually,the model achieved acceptable results.This work provides new insights into integrating ML methods and PSC design techniques,as well as bridging photovoltaic power generation technology and other fields.
基金supported by the Beijing Power Exchange Center (Study on the Medium and Long Term Time Division Transaction Mode and Balance Mechanism of Electric Power)supported by the National Natural Science Foundation of China(No. 72171082)。
文摘Accurate and seamless auxiliary services in the power market can guarantee smooth and continuous power system operation. China’s new round of power system reform has entered a critical period, and reform implementation requires comprehensive improvements in the maturity of the supporting auxiliary service market. This study reviews the development status and evolution path of the European unified power market and the US regional power market, provides experience for the development of China’s regional power market, then identifies the key influencing factors of auxiliary service trading mechanism design in regional power markets. To analyze the rationality of the auxiliary service trading evaluation index, this paper established an evaluation model for assessing regional power markets. Using combined weight optimization, the gray correlation TOPSIS method was applied to comprehensively evaluate auxiliary service trading in the regional power market. Finally, the application of the proposed evaluation method was briefly analyzed to examine four regional power markets in China and evaluate the effectiveness of current market construction in different regions and provide suggestions for future market construction.
文摘To enhance the output torque and minimize the torque ripple of coaxial magnetic gear(CMG),a novel auxiliary flux modulator CMG with unequal magnetic poles is proposed.This design incorporates an inner rotor with an asymmetric sector and a trapezoidal combined N-S pole structure,featuring Halbach arrays for the arrangement of permanent magnets(PMs).The outer rotor PMs adopt a Spoke-type configuration.To optimize the CMG for high output torque and low torque ripple,a sensitivity analysis is conducted to identify key size parameters that significantly influence the optimization objectives.Based on the sensitivity hierarchy of these parameters,a multi-objective optimization analysis is performed using a genetic algorithm(GA)to determine the optimal structural parameter values of the CMG.In addition,a coaxial magnetic gear(CMG)topology with 4 inner and 17 outer pole pairs is adopted,and the parametric model is established.Finally,the electromagnetic properties of the CMG are evaluated using the finite element method.The results indicate a remarkable reduction in torque ripple,specifically by 46.15%.
文摘The classification of lung nodules is a challenging problem as the visual analysis of the nodules and non-nodules revealed homogenous textural patterns.In this work,an Auxiliary Classifier(AC)-Generative Adversarial Network(GAN)based Lung Cancer Classification(LCC)system is developed.The pro-posed AC-GAN-LCC system consists of three modules;preprocessing,Lungs Region Detection(LRD),and AC-GAN classification.A Wienerfilter is employed in the preprocessing module to remove the Gaussian noise.In the LRD module,only the lung regions(left and right lungs)are detected using itera-tive thresholding and morphological operations.In order to extract the lung region only,floodfilling and background subtraction.The detected lung regions are fed to the AC-GAN classifier to detect the nodules.It classifies the nodules into one of the two classes,i.e.,binary classification(such as nodules or non-nodules).The AC-GAN is the extended version of the conditional GAN that predicts the label of a given image.Three different optimization techniques,adaptive gradient optimi-zation,root mean square propagation optimization,and Adam optimization are employed for optimizing the AC-GAN architecture.The proposed AC-GAN-LCC system is evaluated on the Lung Image Database Consortium(LIDC)data-base Computed Tomography(CT)scan images.The proposed AC-GAN-LCC system classifies∼15000 CT slices(7310 non-nodules and 7685 nodules).It pro-vides an overall accuracy of 98.8%on the LIDC database using Adam optimiza-tion by a 10-fold cross-validation approach.