Study on the role of quereentin in polar auxin transportation. Arabidopsis was cultured on medium supplemented with quereetin to observe the growth of hypoeotyls, ^14C-IAA transport assays were conducted to measure th...Study on the role of quereentin in polar auxin transportation. Arabidopsis was cultured on medium supplemented with quereetin to observe the growth of hypoeotyls, ^14C-IAA transport assays were conducted to measure the auxin transport activity. The results showed that Arabidopsis mutant auxl which had been deficient in auxin influx transportion obviously recovered the ability after eultured on the medium with quercetin. The polar auxin transport was promoted by the addition of quereetin. These results indicated that quereetin could promote polar auxin transport in vivo.展开更多
Polar auxin transport (PAT) is critical in plant growth and development, especially polar differentiation and pattern formation. Lots of studies have been performed in dicots while relative less in monocots. Using two...Polar auxin transport (PAT) is critical in plant growth and development, especially polar differentiation and pattern formation. Lots of studies have been performed in dicots while relative less in monocots. Using two kinds of PAT inhibitors, 2, 3, 5-triiodobenzoic acid (TIBA) and 9-hydroxyfluorene-9-carboxylic acid (HFCA), it was shown that PAT is important for rice (Oryza sativa L. cv. Zhonghua 11) root development, including elongation of the primary roots, initiation and elongation of lateral roots, and formation of adventitious roots. Inhibition of PAT resulted in the shortened primary roots, less and shortened lateral and adventitious roots. Exogenously supplemented NAA can partially rescue the formation of adventitious roots but not lateral roots, while low concentration of NAA (0.1 mumol/L) could not rescue either of them, suggesting the possible different mechanisms of lateral and adventitious root initiations. Treatment of 30 mumol/L TIBA did not completely inhibit the initiation of lateral roots, and survival capacities of which were demonstrated through cross section experiments revealing the presence of primordial of lateral roots at different stages. Further studies through localized application of PAT inhibitors indicated that auxin flow, transported from coleoptiles to the base, is not only responsible for the auxin contents in stem nodes but also critical for initiation and elongation of adventitious roots.展开更多
Tiller angle of rice (Oryza sativa L.) is an important agronomic trait that contributes to grain production, and has long attracted attentions of breeders for achieving ideal plant architecture to improve grain yiel...Tiller angle of rice (Oryza sativa L.) is an important agronomic trait that contributes to grain production, and has long attracted attentions of breeders for achieving ideal plant architecture to improve grain yield. Although enormous efforts have been made over the past decades to study mutants with extremely spreading or compact tillers, the molecular mechanism underlying the control of tiller angle of cereal crops remains unknown. Here we report the cloning of the LAZY1 (LA1) gene that regulates shoot gravitropism by which the rice tiller angle is controlled. We show that LA1, a novel grass-specific gene, is temporally and spatially expressed, and plays a negative role in polar auxin transport (PAT). Loss-of-function of LA1 enhances PAT greatly and thus alters the endogenous IAA distribution in shoots, leading to the reduced gravitropism, and therefore the tiller-spreading phenotype of rice plants.展开更多
Root system architecture is influenced by gravity.How the root senses gravity and directs its orientation,so-called gravitropism,is not only a fundamental question in plant biology but also theoretically important for...Root system architecture is influenced by gravity.How the root senses gravity and directs its orientation,so-called gravitropism,is not only a fundamental question in plant biology but also theoretically important for genetic improvement of crop root architecture.However,the mechanism has not been elucidated in most crops.We characterized a rice agravitropism allele,wavy root 1(war1),a loss-of-function allele in OsPIN2,which encodes an auxin efflux transporter.With loss of OsPIN2 function,war1 leads to altered root system architecture including wavy root,larger root distribution angle,and shallower root system due to the loss of gravitropic perception in root tips.In the war1 mutant,polar auxin transport was disrupted in the root tip,leading to abnormal auxin levels and disturbed auxin transport and distribution in columella cells.Amyloplast sedimentation,an important process in gravitropic sensing,was also decreased in root tip columella cells.The results indicated that OsPIN2 controls gravitropism by finely regulating auxin transport,distribution and levels,and amyloplast sedimentation in root tips.We identified a novel role of OsPIN2 in regulating ABA biosynthesis and response pathways.Loss of OsPIN2 function in the war1 resulted in increased sensitivity to ABA in seed germination,increased ABA level,changes in ABA-associated genes in roots,and decreased drought tolerance in the seedlings.These results suggest that the auxin transporter OsPIN2 not only modulates auxin transport to control root gravitropism,but also functions in ABA signaling to affect seed germination and root development,probably by mediating crosstalk between auxin and ABA pathways.展开更多
The potential of Plant Growth Promoting Rhizobacteria(PGPR)has been demonstrated in the case of plant inoculation with bacteria of the genus Azospirillum which improves yield.A.brasilense produces a wide variety of mo...The potential of Plant Growth Promoting Rhizobacteria(PGPR)has been demonstrated in the case of plant inoculation with bacteria of the genus Azospirillum which improves yield.A.brasilense produces a wide variety of molecules,including the natural auxin indole-3-acetic acid(IAA),as well as other phytoregulators.However,several studies have suggested that auxin induces changes in plant development during their interaction with the bacteria.The effects of A.brasilense Sp245 on the development of Arabidopsis thaliana root were investigated to help explain the molecular basis of the interaction.The results obtained showed a decrease in primary root length from the first day and remained so throughout the exposure,accompanied by a stimulation of initiation and maturation of lateral root primordia and an increase of lateral roots.An enhanced auxin response was evident in the vascular tissue and lateral root meristems of inoculated plants.However,after five days of bacterization,the response disappeared in the primary root meristems.The role of polar auxin transport(PAT)in auxins relocation involved the PGP1,AXR4-1,and BEN2 proteins,which apparently mediated A.brasilense-induced root branching of Arabidopsis seedlings.展开更多
The phytohormone auxin plays central roles in many growth and developmental processes in plants.Development of chemical tools targeting the auxin pathway is useful for both plant biology and agriculture.Here we reveal...The phytohormone auxin plays central roles in many growth and developmental processes in plants.Development of chemical tools targeting the auxin pathway is useful for both plant biology and agriculture.Here we reveal that naproxen,a synthetic compound with anti-inflammatory activity in humans,acts as an auxin transport inhibitor targeting PIN-FORMED(PIN)transporters in plants.Physiological experiments indicate that exogenous naproxen treatment affects pleiotropic auxin-regulated developmental processes.Additional cellular and biochemical evidence indicates that naproxen suppresses auxin transport,specifically PIN-mediated auxin efflux.Moreover,biochemical and structural analyses confirm that naproxen binds directly to PIN1 protein via the same binding cavity as the indole-3-acetic acid substrate.Thus,by combining cellular,biochemical,and structural approaches,this study clearly establishes that naproxen is a PIN inhibitor and elucidates the underlying mechanisms.Further use of this compound may advance our understanding of the molecular mechanisms of PIN-mediated auxin transport and expand our toolkit in auxin biology and agriculture.展开更多
Polar transport of the phytohormone auxin and the establishment of localized auxin maxima regulate em- bryonic development, stem cell maintenance, root and shoot architecture, and tropic growth responses. The past dec...Polar transport of the phytohormone auxin and the establishment of localized auxin maxima regulate em- bryonic development, stem cell maintenance, root and shoot architecture, and tropic growth responses. The past decade has been marked by dramatic progress in efforts to elucidate the complex mechanisms by which auxin transport regulates plant growth. As the understanding of auxin transport regulation has been increasingly elaborated, it has become clear that this process is involved in almost all plant growth and environmental responses in some way. However, we still lack information about some basic aspects of this fundamental regulatory mechanism. In this review, we present what we know (or what we think we know) and what we do not know about seven auxin-regulated processes. We discuss the role of auxin transport in gravitropism in primary and lateral roots, phototropism, shoot branching, leaf expansion, and venation. We also discuss the auxin reflux/fountain model at the root tip, flavonoid modulation of auxin transport processes, and outstanding aspects of post-translational regulation of auxin transporters. This discussion is not meant to be exhaustive, but highlights areas in which generally held assumptions require more substantive validation.展开更多
In plants, proper seed development and the continuing post-embryonic organogenesis both require that dif- ferent cell types are correctly differentiated in response to internal and external stimuli. Among internal sti...In plants, proper seed development and the continuing post-embryonic organogenesis both require that dif- ferent cell types are correctly differentiated in response to internal and external stimuli. Among internal stimuli, plant hormones and particularly auxin and its polar transport (PAT) have been shown to regulate a multitude of plant phys- iological processes during vegetative and reproductive development. Although our current auxin knowledge is almost based on the results from researches on the eudicot Arabidopsis thaliana, during the last few years, many studies tried to transfer this knowledge from model to crop species, maize in particular. Applications of auxin transport inhibitors, mutant characterization, and molecular and cell biology approaches, facilitated by the sequencing of the maize genome, allowed the identification of genes involved in auxin metabolism, signaling, and particularly in polar auxin transport. PIN auxin efflux carriers have been shown to play an essential role in regulating PAT during both seed and post-embryonic development in maize. In this review, we provide a summary of the recent findings on PIN-mediated polar auxin transport during maize development. Similarities and differences between maize and Arabidopsis are analyzed and discussed, also considering that their different plant architecture depends on the differentiation of structures whose development is con- trolled by auxins.展开更多
Cross talk between phytohormones, nitric oxide (NO), and auxin has been implicated in the control of plant growth and development. Two recent reports indicate that NO promoted auxin signaling but inhibited auxin tra...Cross talk between phytohormones, nitric oxide (NO), and auxin has been implicated in the control of plant growth and development. Two recent reports indicate that NO promoted auxin signaling but inhibited auxin transport probably through S-nitrosylation. However, genetic evidence for the effect of S-nitrosylation on auxin physiology has been lacking. In this study, we used a genetic approach to understand the broader role of S-nitrosylation in auxin physiology in Arabidopsis. We compared auxin signaling and transport in Col-0 and gsnorl-3, a loss-of-function GSNOR1 mutant defective in protein de-nitrosylation. Our results showed that auxin signaling was impaired in the gsnorl-3 mutant as revealed by significantly reduced DR5-GUS/ DR5-GFP accumulation and compromised degradation of AXR3NT-GUS, a useful reporter in interrogating auxin-mediated degradation of Aux/IAA by auxin receptors. In addition, polar auxin transport was compro- mised in gsnorl-3, which was correlated with universally reduced levels of PIN or GFP-PIN proteins in the roots of the mutant in a manner independent of transcription and 26S proteasome degradation. Our results suggest that S-nitrosylation and GSNORl-mediated de-nitrosylation contribute to auxin physiology, and impaired auxin signaling and compromised auxin transport are responsible for the auxin-related morpho- logical phenotypes displayed by the gsnorl-3 mutant.展开更多
Arabidopsis abcbl abcb19 double mutants defective in the auxin transporters ABCB1/PGP1 and ABCB19/PGP19 are altered in stamen elongation, anther dehiscence and pollen maturation. To assess the contribution of these tr...Arabidopsis abcbl abcb19 double mutants defective in the auxin transporters ABCB1/PGP1 and ABCB19/PGP19 are altered in stamen elongation, anther dehiscence and pollen maturation. To assess the contribution of these transporters to stamen development we performed phenotypic, histological analyses, and in situ hybridizations on abcbl and abcbl9 single mutant flowers. We found that pollen maturation and anther dehiscence are precocious in the abcbl but not in the abcb19 mutant. Accordingly, endothecium ligniflcation is altered only in abcbl anthers. Both abcbl and abcb1 abcb19 stamens also show altered early development, with asynchronous anther Iocules and a multilayer tapetum. DAPI staining showed that the timing of meiosis is asynchronous in abcbl abcb19 anther Iocules, while only a small percentage of pollen grains are non- viable according to Alexander's staining. In agreement, TAM (TARDY ASYNCHRONOUS MEIOSIS), as well as BAM2 (BARELY ANY MERISTEM)involved in tapetal cell development--areoverexpressed in abcbl abcb19 young flower buds. Corre- spondingly, ABCB1 and ABCB19 mRNA localization supports the observed phenotypes of abcbl and abcbl abcb19 mutant anthers. In conclusion, we provide evidence that auxin transport plays a significant role both in early and late stamen development: ABCB1 plays a major role during anther development, while ABCB19 has a synergistic role.展开更多
Auxin is a key hormonal regulator,that governs plant growth and development in concert with other hormonal pathways.The unique feature of auxin is its polar,cell-to-cell transport that leads to the formation of local ...Auxin is a key hormonal regulator,that governs plant growth and development in concert with other hormonal pathways.The unique feature of auxin is its polar,cell-to-cell transport that leads to the formation of local auxin maxima and gradients,which coordinate initiation and patterning of plant organs.The molecular machinery mediating polar auxin transport is one of the important points of interaction with other hormones.Multiple hormonal pathways converge at the regulation of auxin transport and form a regulatory network that integrates various developmental and environmental inputs to steer plant development.In this review,we discuss recent advances in understanding the mechanisms that underlie regulation of polar auxin transport by multiple hormonal pathways.Specifically,we focus on the post-translational mechanisms that contribute to fine-tuning of the abundance and polarity of auxin transporters at the plasma membrane and thereby enable rapid modification of the auxin flow to coordinate plant growth and development.展开更多
Auxin is unique among plant hormones in that its function requires polarized transport across plant cells.A chemiosmotic model was proposed to explain how polar auxin transport is derived by the H^(+)gradient across t...Auxin is unique among plant hormones in that its function requires polarized transport across plant cells.A chemiosmotic model was proposed to explain how polar auxin transport is derived by the H^(+)gradient across the plasma membrane(PM)established by PM H^(+)-adenosine triphosphatases(ATPases).However,a classical genetic approach by mutations in PM H^(+)-ATPase members did not result in the ablation of polar auxin distribution,possibly due to functional redundancy in this gene family.To confirm the crucial role of PM H^(+)-ATPases in the polar auxin transport model,we employed a chemical genetic approach.Through a chemical screen,we identified protonstatin-1(PS-1),a selective small-molecule inhibitor of PM H^(+)-ATPase activity that inhibits auxin transport.Assays with transgenic plants and yeast strains showed that the activity of PM H^(+)-ATPases affects auxin uptake as well as acropetal and basipetal polar auxin transport.We propose that PS-1 can be used as a tool to interrogate the function of PM H^(+)-ATPases.Our results support the chemiosmotic model in which PM H^(+)-ATPase itself plays a fundamental role in polar auxin transport.展开更多
The effects of auxin polar transport inhibitors, 9-hydroxy-fluorene-9-carboxylic acid (HFCA); 2, 3, 5-triiodobenzoic acid (TIBA) and trans-cinnamic acid (CA)on leaf pattern formation were investigated with shoots form...The effects of auxin polar transport inhibitors, 9-hydroxy-fluorene-9-carboxylic acid (HFCA); 2, 3, 5-triiodobenzoic acid (TIBA) and trans-cinnamic acid (CA)on leaf pattern formation were investigated with shoots formed from cultured leaf explants of tobacco and cultured pedicel explants of Orychophragmus violaceus, and the seedlings of tobacco and Brassica chinensis. Although the effective concentration varies with the inhibitors used, all of the inhibitors induced the formation of trumpet-shaped and/or fused leaves. The frequency of trumpet-shaped leaf formation was related to the concentration of inhibitors in the medium.Histological observation of tobacco seedlings showed that there was only one main vascular bundle and several minor vascular bundles in normal leaves of the control, but there were several vascular bundles of more or less the same size in the trumpet-shaped leaves of treated ones.These results indicated that auxin polar transport played an important role on bilateral symmetry of leaf growth.展开更多
Polar auxin transport plays a divergent role in plant growth and developmental processes including root and embryo development, vascular pattern formation and cell elongation. Recently isolated Arabidopsis pin gene fa...Polar auxin transport plays a divergent role in plant growth and developmental processes including root and embryo development, vascular pattern formation and cell elongation. Recently isolated Arabidopsis pin gene family was believed to encode a component of auxin efflux carrier (G(?)lweiler et al, 1998). Based on the Arabidopsis pin1 sequence we have isolated a Brassica juncea cDNA (designated Bjpin1), which encoded a 70-kDa putative auxin efflux carrier. Deduced BjPIN1 shared 65% identities at protein level with AtPINl and was highly homologous to other putative PIN proteins of Arabidopsis (with highest homology to AtPIN3). Hydrophobic analysis showed similar structures between BjPINl and AtPIN proteins. Presence of 6 exons (varying in size between 65 bp and 1229 bp) and 5 introns (sizes between 89 bp and 463 bp) in the genomic fragment was revealed by comparing the genomic and cDNA sequences. Northern blot analysis indicated that Bjpin1 was expressed in most of the tissues tested, with a relatively higher level of transcript in flowers and a lower level in root tissues. Promoter-reporter gene fusion studies further revealed the expression of Bjpin1 in the mature pollen grains, young seeds, root tip, leaf vascular tissue and trace bundle, stem epidermis, cortex and vascular cells. BjPINl was localized on the plasma membrane as demonstrated through fusion expression of green fluorescent protein (GFP). Auxin efflux carrier activity was elevated in transgenic Arabidopsis expressing BjPIN1.展开更多
Based on the sequence information of Arabidopsis PIN1, two cDNAs encoding PIN homologues from Brassica juncea, Bjpin2 and Bjpin3, were isolated through cDNA library screening. Bjpin2 and Bjpin3 encoded proteins contai...Based on the sequence information of Arabidopsis PIN1, two cDNAs encoding PIN homologues from Brassica juncea, Bjpin2 and Bjpin3, were isolated through cDNA library screening. Bjpin2 and Bjpin3 encoded proteins containing 640 and 635 amino acid residues, respectively, which shared 97.5% identities with each other and were highly homologous to Arabidopsis PIN1, PIN2 and other putative PIN proteins. BJPIN2 and BjPIN3 had similar structures as AtPIN proteins. Northern blot analysis indicated that Bjpin2 was expressed in stem, leaf and floral tissues, while Bjpin3 was expressed predominantly in stem and hypocotyls. Two promoter fragments of pin genes, Bjpin-X and Bjpin-Z, were isolated by 'genome walking' technique using primers at 5'-end of pin cDNA. Promoter-gus fusion studies revealed the GUS activities driven by Bjpin-X were at internal side of xylem and petal; while those driven by Bjpin-Z were detected at leaf vein, epidermal cell and cortex of stem, vascular tissues and anther. Results of the pin genes with different expression patterns in B. juncea suggested the presence of a gene family.展开更多
Polar auxin transport plays a divergent role in plant growth and developmental processes including root and embryo development, vascular pattern formation and cell elongation. Recently isolated Arabidopsis pin gene fa...Polar auxin transport plays a divergent role in plant growth and developmental processes including root and embryo development, vascular pattern formation and cell elongation. Recently isolated Arabidopsis pin gene family was believed to encode a component of auxin efflux carrier (G(?)lweiler et al, 1998). Based on the Arabidopsis pin1 sequence we have isolated a Brassica juncea cDNA (designated Bjpin1), which encoded a 70-kDa putative auxin efflux carrier. Deduced BjPIN1 shared 65% identities at protein level with AtPINl and was highly homologous to other putative PIN proteins of Arabidopsis (with highest homology to AtPIN3). Hydrophobic analysis showed similar structures between BjPINl and AtPIN proteins. Presence of 6 exons (varying in size between 65 bp and 1229 bp) and 5 introns (sizes between 89 bp and 463 bp) in the genomic fragment was revealed by comparing the genomic and cDNA sequences. Northern blot analysis indicated that Bjpin1 was expressed in most of the tissues tested, with a relatively higher level of transcript in flowers and a lower level in root tissues. Promoter-reporter gene fusion studies further revealed the expression of Bjpin1 in the mature pollen grains, young seeds, root tip, leaf vascular tissue and trace bundle, stem epidermis, cortex and vascular cells. BjPINl was localized on the plasma membrane as demonstrated through fusion expression of green fluorescent protein (GFP). Auxin efflux carrier activity was elevated in transgenic Arabidopsis expressing BjPIN1.展开更多
Based on the sequence information of Arabidopsis PIN1, two cDNAs encoding PIN homologues fromBrassica juncea, Bjpin2 and Bjpin3, were isolated through cDNA library screening. Bjpin2 and Bjpin3encoded proteins containi...Based on the sequence information of Arabidopsis PIN1, two cDNAs encoding PIN homologues fromBrassica juncea, Bjpin2 and Bjpin3, were isolated through cDNA library screening. Bjpin2 and Bjpin3encoded proteins containing 640 and 635 amino acid residues, respectively, which shared 97.5% identities witheach other and were highly homologous to Arabidopsis PIN1, PIN2 and other putative PIN proteins. BjPIN2and BjPIN3 had similar structures as AtPIN proteins. Northern blot analysis indicated that Bjpin2 wasexpressed in stem, leaf and floral tissues, while Bjpin3 was expressed predominantly in stem and hypocotyls.Two promoter fragments of pin genes, Bjpin-X and Bjpin-Z, were isolated by 'genome walking' techniqueusing primers at 5'-end of pin cDNA. Promoter-gus fusion studies revealed the GUS activities driven byBjpin-X were at internal side of xylem and petal; while those driven by Bjpin-Z were detected at leaf vein,epidermal cell and cortex of stem, vascular tissues and anther. Results of the pin genes with differentexpression patterns in B. juncea suggested the presence of a gene family.展开更多
Auxin has been suggested to play an essential role in regulating apple fruit maturation and ripening, though the molecular function of auxin and its interaction with ethylene during apple fruit development are largely...Auxin has been suggested to play an essential role in regulating apple fruit maturation and ripening, though the molecular function of auxin and its interaction with ethylene during apple fruit development are largely unknown. To understand the function of auxin during apple fruit maturation and ripening, auxin efflux carrier and IAA-amido synthetase encoding genes were identified from the apple genome based on the results of previous microarray analysis. The expression patterns of these genes were analyzed using qRT-PCR during 10 - 12 weeks of fruit maturation for two apple cultivars: “Golden Delicious” (GD) and “Cripps Pink” (CP), which have the distinct patterns of maturation progression. Our results showed that the expressions of auxin efflux carrier and IAA-amido synthetase genes have a correlation with the timing of ethylene biosynthesis pathway activation in both cultivars. The earlier and stronger expression of MdGH3.102 and MdAECFP1 in the fruit of GD, a mid-season cultivar, correlates with the earlier activation of a pre-climacteric ethylene biosynthesis gene of MdACS3, compared with that in CP, a late-ripening apple cultivar. Results of exogenous IAA treatment indicated that the expression patterns of the genes were regulated in a fruit maturity dependent manner. Our results suggested that the dynamics of the auxin level in apple fruit cortex could be one of the key factors influencing the timing of ethylene biosynthesis pathway activation and consequently contributed to the control of the apple maturation progression.展开更多
基金Key Project of Conditions Platform of National Science and Technology (2005DKA21002-15)~~
文摘Study on the role of quereentin in polar auxin transportation. Arabidopsis was cultured on medium supplemented with quereetin to observe the growth of hypoeotyls, ^14C-IAA transport assays were conducted to measure the auxin transport activity. The results showed that Arabidopsis mutant auxl which had been deficient in auxin influx transportion obviously recovered the ability after eultured on the medium with quercetin. The polar auxin transport was promoted by the addition of quereetin. These results indicated that quereetin could promote polar auxin transport in vivo.
文摘Polar auxin transport (PAT) is critical in plant growth and development, especially polar differentiation and pattern formation. Lots of studies have been performed in dicots while relative less in monocots. Using two kinds of PAT inhibitors, 2, 3, 5-triiodobenzoic acid (TIBA) and 9-hydroxyfluorene-9-carboxylic acid (HFCA), it was shown that PAT is important for rice (Oryza sativa L. cv. Zhonghua 11) root development, including elongation of the primary roots, initiation and elongation of lateral roots, and formation of adventitious roots. Inhibition of PAT resulted in the shortened primary roots, less and shortened lateral and adventitious roots. Exogenously supplemented NAA can partially rescue the formation of adventitious roots but not lateral roots, while low concentration of NAA (0.1 mumol/L) could not rescue either of them, suggesting the possible different mechanisms of lateral and adventitious root initiations. Treatment of 30 mumol/L TIBA did not completely inhibit the initiation of lateral roots, and survival capacities of which were demonstrated through cross section experiments revealing the presence of primordial of lateral roots at different stages. Further studies through localized application of PAT inhibitors indicated that auxin flow, transported from coleoptiles to the base, is not only responsible for the auxin contents in stem nodes but also critical for initiation and elongation of adventitious roots.
基金grants from the Ministry of Science and Technology of China(2005CB 1208)the National Natural Science Foundation of China(30330040 and 30570161).
文摘Tiller angle of rice (Oryza sativa L.) is an important agronomic trait that contributes to grain production, and has long attracted attentions of breeders for achieving ideal plant architecture to improve grain yield. Although enormous efforts have been made over the past decades to study mutants with extremely spreading or compact tillers, the molecular mechanism underlying the control of tiller angle of cereal crops remains unknown. Here we report the cloning of the LAZY1 (LA1) gene that regulates shoot gravitropism by which the rice tiller angle is controlled. We show that LA1, a novel grass-specific gene, is temporally and spatially expressed, and plays a negative role in polar auxin transport (PAT). Loss-of-function of LA1 enhances PAT greatly and thus alters the endogenous IAA distribution in shoots, leading to the reduced gravitropism, and therefore the tiller-spreading phenotype of rice plants.
基金supported by the National Natural Science Foundation of China(32070197,31570181 and 31200148)Chinese Universities Scientific Fund(2452018149)。
文摘Root system architecture is influenced by gravity.How the root senses gravity and directs its orientation,so-called gravitropism,is not only a fundamental question in plant biology but also theoretically important for genetic improvement of crop root architecture.However,the mechanism has not been elucidated in most crops.We characterized a rice agravitropism allele,wavy root 1(war1),a loss-of-function allele in OsPIN2,which encodes an auxin efflux transporter.With loss of OsPIN2 function,war1 leads to altered root system architecture including wavy root,larger root distribution angle,and shallower root system due to the loss of gravitropic perception in root tips.In the war1 mutant,polar auxin transport was disrupted in the root tip,leading to abnormal auxin levels and disturbed auxin transport and distribution in columella cells.Amyloplast sedimentation,an important process in gravitropic sensing,was also decreased in root tip columella cells.The results indicated that OsPIN2 controls gravitropism by finely regulating auxin transport,distribution and levels,and amyloplast sedimentation in root tips.We identified a novel role of OsPIN2 in regulating ABA biosynthesis and response pathways.Loss of OsPIN2 function in the war1 resulted in increased sensitivity to ABA in seed germination,increased ABA level,changes in ABA-associated genes in roots,and decreased drought tolerance in the seedlings.These results suggest that the auxin transporter OsPIN2 not only modulates auxin transport to control root gravitropism,but also functions in ABA signaling to affect seed germination and root development,probably by mediating crosstalk between auxin and ABA pathways.
基金supported by the Coordinación de la Investigación Científica UMSNH.E.C.-F.and J.A.-R.were fellows of CONACYT-México.
文摘The potential of Plant Growth Promoting Rhizobacteria(PGPR)has been demonstrated in the case of plant inoculation with bacteria of the genus Azospirillum which improves yield.A.brasilense produces a wide variety of molecules,including the natural auxin indole-3-acetic acid(IAA),as well as other phytoregulators.However,several studies have suggested that auxin induces changes in plant development during their interaction with the bacteria.The effects of A.brasilense Sp245 on the development of Arabidopsis thaliana root were investigated to help explain the molecular basis of the interaction.The results obtained showed a decrease in primary root length from the first day and remained so throughout the exposure,accompanied by a stimulation of initiation and maturation of lateral root primordia and an increase of lateral roots.An enhanced auxin response was evident in the vascular tissue and lateral root meristems of inoculated plants.However,after five days of bacterization,the response disappeared in the primary root meristems.The role of polar auxin transport(PAT)in auxins relocation involved the PGP1,AXR4-1,and BEN2 proteins,which apparently mediated A.brasilense-induced root branching of Arabidopsis seedlings.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB37020103 to Linfeng Sun)research funds from the Center for Advanced Interdisciplinary Science and Biomedicine of IHM,Division of Life Sciences and Medicine,University of Science and Technology of China(QYPY20220012 to S.T.)+4 种基金start-up funding from the University of Science and Technology of China and the Chinese Academy of Sciences(GG9100007007,KY9100000026,KY9100000051,KJ2070000079 to S.T.)the National Natural Science Foundation of China(31900885 to X.L.,31870732 to Linfeng Sun)the Natural Science Foundation of Anhui Province(2008085MC90 to X.L.,2008085J15 to Linfeng Sun)the Fundamental Research Funds for the Central Universities(WK9100000021 to S.T.,WK9100000031 to Linfeng Sun)and the USTC Research Funds of the Double First-Class Initiative(YD9100002016 to S.T.,YD9100002004 to Linfeng Sun).Linfeng Sun is supported by an Outstanding Young Scholar Award from the Qiu Shi Science and Technologies Foundation and a Young Scholar Award from the Cyrus Tang Foundation.
文摘The phytohormone auxin plays central roles in many growth and developmental processes in plants.Development of chemical tools targeting the auxin pathway is useful for both plant biology and agriculture.Here we reveal that naproxen,a synthetic compound with anti-inflammatory activity in humans,acts as an auxin transport inhibitor targeting PIN-FORMED(PIN)transporters in plants.Physiological experiments indicate that exogenous naproxen treatment affects pleiotropic auxin-regulated developmental processes.Additional cellular and biochemical evidence indicates that naproxen suppresses auxin transport,specifically PIN-mediated auxin efflux.Moreover,biochemical and structural analyses confirm that naproxen binds directly to PIN1 protein via the same binding cavity as the indole-3-acetic acid substrate.Thus,by combining cellular,biochemical,and structural approaches,this study clearly establishes that naproxen is a PIN inhibitor and elucidates the underlying mechanisms.Further use of this compound may advance our understanding of the molecular mechanisms of PIN-mediated auxin transport and expand our toolkit in auxin biology and agriculture.
基金This work was funded by the National Science Foundation,A.S.M.and Purdue Agriculture Research Foundation grant to W.A.P
文摘Polar transport of the phytohormone auxin and the establishment of localized auxin maxima regulate em- bryonic development, stem cell maintenance, root and shoot architecture, and tropic growth responses. The past decade has been marked by dramatic progress in efforts to elucidate the complex mechanisms by which auxin transport regulates plant growth. As the understanding of auxin transport regulation has been increasingly elaborated, it has become clear that this process is involved in almost all plant growth and environmental responses in some way. However, we still lack information about some basic aspects of this fundamental regulatory mechanism. In this review, we present what we know (or what we think we know) and what we do not know about seven auxin-regulated processes. We discuss the role of auxin transport in gravitropism in primary and lateral roots, phototropism, shoot branching, leaf expansion, and venation. We also discuss the auxin reflux/fountain model at the root tip, flavonoid modulation of auxin transport processes, and outstanding aspects of post-translational regulation of auxin transporters. This discussion is not meant to be exhaustive, but highlights areas in which generally held assumptions require more substantive validation.
文摘In plants, proper seed development and the continuing post-embryonic organogenesis both require that dif- ferent cell types are correctly differentiated in response to internal and external stimuli. Among internal stimuli, plant hormones and particularly auxin and its polar transport (PAT) have been shown to regulate a multitude of plant phys- iological processes during vegetative and reproductive development. Although our current auxin knowledge is almost based on the results from researches on the eudicot Arabidopsis thaliana, during the last few years, many studies tried to transfer this knowledge from model to crop species, maize in particular. Applications of auxin transport inhibitors, mutant characterization, and molecular and cell biology approaches, facilitated by the sequencing of the maize genome, allowed the identification of genes involved in auxin metabolism, signaling, and particularly in polar auxin transport. PIN auxin efflux carriers have been shown to play an essential role in regulating PAT during both seed and post-embryonic development in maize. In this review, we provide a summary of the recent findings on PIN-mediated polar auxin transport during maize development. Similarities and differences between maize and Arabidopsis are analyzed and discussed, also considering that their different plant architecture depends on the differentiation of structures whose development is con- trolled by auxins.
文摘Cross talk between phytohormones, nitric oxide (NO), and auxin has been implicated in the control of plant growth and development. Two recent reports indicate that NO promoted auxin signaling but inhibited auxin transport probably through S-nitrosylation. However, genetic evidence for the effect of S-nitrosylation on auxin physiology has been lacking. In this study, we used a genetic approach to understand the broader role of S-nitrosylation in auxin physiology in Arabidopsis. We compared auxin signaling and transport in Col-0 and gsnorl-3, a loss-of-function GSNOR1 mutant defective in protein de-nitrosylation. Our results showed that auxin signaling was impaired in the gsnorl-3 mutant as revealed by significantly reduced DR5-GUS/ DR5-GFP accumulation and compromised degradation of AXR3NT-GUS, a useful reporter in interrogating auxin-mediated degradation of Aux/IAA by auxin receptors. In addition, polar auxin transport was compro- mised in gsnorl-3, which was correlated with universally reduced levels of PIN or GFP-PIN proteins in the roots of the mutant in a manner independent of transcription and 26S proteasome degradation. Our results suggest that S-nitrosylation and GSNORl-mediated de-nitrosylation contribute to auxin physiology, and impaired auxin signaling and compromised auxin transport are responsible for the auxin-related morpho- logical phenotypes displayed by the gsnorl-3 mutant.
基金partially supported by a research grant from MIUR (PRIN) to P.C. and M.C.a research grant to M.C. from the Italian Ministry of Foreign Affairs (Direzione Generale per la Promozione del Sistema Paese, Unità per la cooperazione scientifica e tecnologica bilaterale e multilaterale)
文摘Arabidopsis abcbl abcb19 double mutants defective in the auxin transporters ABCB1/PGP1 and ABCB19/PGP19 are altered in stamen elongation, anther dehiscence and pollen maturation. To assess the contribution of these transporters to stamen development we performed phenotypic, histological analyses, and in situ hybridizations on abcbl and abcbl9 single mutant flowers. We found that pollen maturation and anther dehiscence are precocious in the abcbl but not in the abcb19 mutant. Accordingly, endothecium ligniflcation is altered only in abcbl anthers. Both abcbl and abcb1 abcb19 stamens also show altered early development, with asynchronous anther Iocules and a multilayer tapetum. DAPI staining showed that the timing of meiosis is asynchronous in abcbl abcb19 anther Iocules, while only a small percentage of pollen grains are non- viable according to Alexander's staining. In agreement, TAM (TARDY ASYNCHRONOUS MEIOSIS), as well as BAM2 (BARELY ANY MERISTEM)involved in tapetal cell development--areoverexpressed in abcbl abcb19 young flower buds. Corre- spondingly, ABCB1 and ABCB19 mRNA localization supports the observed phenotypes of abcbl and abcbl abcb19 mutant anthers. In conclusion, we provide evidence that auxin transport plays a significant role both in early and late stamen development: ABCB1 plays a major role during anther development, while ABCB19 has a synergistic role.
文摘Auxin is a key hormonal regulator,that governs plant growth and development in concert with other hormonal pathways.The unique feature of auxin is its polar,cell-to-cell transport that leads to the formation of local auxin maxima and gradients,which coordinate initiation and patterning of plant organs.The molecular machinery mediating polar auxin transport is one of the important points of interaction with other hormones.Multiple hormonal pathways converge at the regulation of auxin transport and form a regulatory network that integrates various developmental and environmental inputs to steer plant development.In this review,we discuss recent advances in understanding the mechanisms that underlie regulation of polar auxin transport by multiple hormonal pathways.Specifically,we focus on the post-translational mechanisms that contribute to fine-tuning of the abundance and polarity of auxin transporters at the plasma membrane and thereby enable rapid modification of the auxin flow to coordinate plant growth and development.
基金supported by the National Key Research and Development Program of China (2017YFA0505200 to X.L.)the National Natural Science Foundation of China (21625201, 219611 42010, 91853202 to X.L.+1 种基金32070301, 31872659 to Y.Y.)the Beijing Outstanding Young Scientist Program (BJJWZYJH01201910001001 to X.L.)
文摘Auxin is unique among plant hormones in that its function requires polarized transport across plant cells.A chemiosmotic model was proposed to explain how polar auxin transport is derived by the H^(+)gradient across the plasma membrane(PM)established by PM H^(+)-adenosine triphosphatases(ATPases).However,a classical genetic approach by mutations in PM H^(+)-ATPase members did not result in the ablation of polar auxin distribution,possibly due to functional redundancy in this gene family.To confirm the crucial role of PM H^(+)-ATPases in the polar auxin transport model,we employed a chemical genetic approach.Through a chemical screen,we identified protonstatin-1(PS-1),a selective small-molecule inhibitor of PM H^(+)-ATPase activity that inhibits auxin transport.Assays with transgenic plants and yeast strains showed that the activity of PM H^(+)-ATPases affects auxin uptake as well as acropetal and basipetal polar auxin transport.We propose that PS-1 can be used as a tool to interrogate the function of PM H^(+)-ATPases.Our results support the chemiosmotic model in which PM H^(+)-ATPase itself plays a fundamental role in polar auxin transport.
文摘The effects of auxin polar transport inhibitors, 9-hydroxy-fluorene-9-carboxylic acid (HFCA); 2, 3, 5-triiodobenzoic acid (TIBA) and trans-cinnamic acid (CA)on leaf pattern formation were investigated with shoots formed from cultured leaf explants of tobacco and cultured pedicel explants of Orychophragmus violaceus, and the seedlings of tobacco and Brassica chinensis. Although the effective concentration varies with the inhibitors used, all of the inhibitors induced the formation of trumpet-shaped and/or fused leaves. The frequency of trumpet-shaped leaf formation was related to the concentration of inhibitors in the medium.Histological observation of tobacco seedlings showed that there was only one main vascular bundle and several minor vascular bundles in normal leaves of the control, but there were several vascular bundles of more or less the same size in the trumpet-shaped leaves of treated ones.These results indicated that auxin polar transport played an important role on bilateral symmetry of leaf growth.
基金Studies were supported by "the National NaturalScience Foundation of China, No. 30070073", StateKey Project of Basic Research, No. G199901l604"and "National Natural Science Foundation of Pan-Deng". We thank Dr. Charles Brearley and JianXu for hel
文摘Polar auxin transport plays a divergent role in plant growth and developmental processes including root and embryo development, vascular pattern formation and cell elongation. Recently isolated Arabidopsis pin gene family was believed to encode a component of auxin efflux carrier (G(?)lweiler et al, 1998). Based on the Arabidopsis pin1 sequence we have isolated a Brassica juncea cDNA (designated Bjpin1), which encoded a 70-kDa putative auxin efflux carrier. Deduced BjPIN1 shared 65% identities at protein level with AtPINl and was highly homologous to other putative PIN proteins of Arabidopsis (with highest homology to AtPIN3). Hydrophobic analysis showed similar structures between BjPINl and AtPIN proteins. Presence of 6 exons (varying in size between 65 bp and 1229 bp) and 5 introns (sizes between 89 bp and 463 bp) in the genomic fragment was revealed by comparing the genomic and cDNA sequences. Northern blot analysis indicated that Bjpin1 was expressed in most of the tissues tested, with a relatively higher level of transcript in flowers and a lower level in root tissues. Promoter-reporter gene fusion studies further revealed the expression of Bjpin1 in the mature pollen grains, young seeds, root tip, leaf vascular tissue and trace bundle, stem epidermis, cortex and vascular cells. BjPINl was localized on the plasma membrane as demonstrated through fusion expression of green fluorescent protein (GFP). Auxin efflux carrier activity was elevated in transgenic Arabidopsis expressing BjPIN1.
基金Studies were supported by the National NaturalSciences Foundation of China (No. 30070073, 95-Yu-29-7) and State Key Project of Basic Research (No.G1999011604). We greatly thank Dr. K1aus Palme for providing the Atpinl nucleotide sequences.
文摘Based on the sequence information of Arabidopsis PIN1, two cDNAs encoding PIN homologues from Brassica juncea, Bjpin2 and Bjpin3, were isolated through cDNA library screening. Bjpin2 and Bjpin3 encoded proteins containing 640 and 635 amino acid residues, respectively, which shared 97.5% identities with each other and were highly homologous to Arabidopsis PIN1, PIN2 and other putative PIN proteins. BJPIN2 and BjPIN3 had similar structures as AtPIN proteins. Northern blot analysis indicated that Bjpin2 was expressed in stem, leaf and floral tissues, while Bjpin3 was expressed predominantly in stem and hypocotyls. Two promoter fragments of pin genes, Bjpin-X and Bjpin-Z, were isolated by 'genome walking' technique using primers at 5'-end of pin cDNA. Promoter-gus fusion studies revealed the GUS activities driven by Bjpin-X were at internal side of xylem and petal; while those driven by Bjpin-Z were detected at leaf vein, epidermal cell and cortex of stem, vascular tissues and anther. Results of the pin genes with different expression patterns in B. juncea suggested the presence of a gene family.
基金Studies were supported by 'the National NaturalScience Foundation of China, No. 30070073', StateKey Project of Basic Research, No. G199901l604'and 'National Natural Science Foundation of Pan-Deng'. We thank Dr. Charles Brearley and JianXu for hel
文摘Polar auxin transport plays a divergent role in plant growth and developmental processes including root and embryo development, vascular pattern formation and cell elongation. Recently isolated Arabidopsis pin gene family was believed to encode a component of auxin efflux carrier (G(?)lweiler et al, 1998). Based on the Arabidopsis pin1 sequence we have isolated a Brassica juncea cDNA (designated Bjpin1), which encoded a 70-kDa putative auxin efflux carrier. Deduced BjPIN1 shared 65% identities at protein level with AtPINl and was highly homologous to other putative PIN proteins of Arabidopsis (with highest homology to AtPIN3). Hydrophobic analysis showed similar structures between BjPINl and AtPIN proteins. Presence of 6 exons (varying in size between 65 bp and 1229 bp) and 5 introns (sizes between 89 bp and 463 bp) in the genomic fragment was revealed by comparing the genomic and cDNA sequences. Northern blot analysis indicated that Bjpin1 was expressed in most of the tissues tested, with a relatively higher level of transcript in flowers and a lower level in root tissues. Promoter-reporter gene fusion studies further revealed the expression of Bjpin1 in the mature pollen grains, young seeds, root tip, leaf vascular tissue and trace bundle, stem epidermis, cortex and vascular cells. BjPINl was localized on the plasma membrane as demonstrated through fusion expression of green fluorescent protein (GFP). Auxin efflux carrier activity was elevated in transgenic Arabidopsis expressing BjPIN1.
文摘Based on the sequence information of Arabidopsis PIN1, two cDNAs encoding PIN homologues fromBrassica juncea, Bjpin2 and Bjpin3, were isolated through cDNA library screening. Bjpin2 and Bjpin3encoded proteins containing 640 and 635 amino acid residues, respectively, which shared 97.5% identities witheach other and were highly homologous to Arabidopsis PIN1, PIN2 and other putative PIN proteins. BjPIN2and BjPIN3 had similar structures as AtPIN proteins. Northern blot analysis indicated that Bjpin2 wasexpressed in stem, leaf and floral tissues, while Bjpin3 was expressed predominantly in stem and hypocotyls.Two promoter fragments of pin genes, Bjpin-X and Bjpin-Z, were isolated by 'genome walking' techniqueusing primers at 5'-end of pin cDNA. Promoter-gus fusion studies revealed the GUS activities driven byBjpin-X were at internal side of xylem and petal; while those driven by Bjpin-Z were detected at leaf vein,epidermal cell and cortex of stem, vascular tissues and anther. Results of the pin genes with differentexpression patterns in B. juncea suggested the presence of a gene family.
文摘Auxin has been suggested to play an essential role in regulating apple fruit maturation and ripening, though the molecular function of auxin and its interaction with ethylene during apple fruit development are largely unknown. To understand the function of auxin during apple fruit maturation and ripening, auxin efflux carrier and IAA-amido synthetase encoding genes were identified from the apple genome based on the results of previous microarray analysis. The expression patterns of these genes were analyzed using qRT-PCR during 10 - 12 weeks of fruit maturation for two apple cultivars: “Golden Delicious” (GD) and “Cripps Pink” (CP), which have the distinct patterns of maturation progression. Our results showed that the expressions of auxin efflux carrier and IAA-amido synthetase genes have a correlation with the timing of ethylene biosynthesis pathway activation in both cultivars. The earlier and stronger expression of MdGH3.102 and MdAECFP1 in the fruit of GD, a mid-season cultivar, correlates with the earlier activation of a pre-climacteric ethylene biosynthesis gene of MdACS3, compared with that in CP, a late-ripening apple cultivar. Results of exogenous IAA treatment indicated that the expression patterns of the genes were regulated in a fruit maturity dependent manner. Our results suggested that the dynamics of the auxin level in apple fruit cortex could be one of the key factors influencing the timing of ethylene biosynthesis pathway activation and consequently contributed to the control of the apple maturation progression.