The application of fertilizer in agricultural production has become universally common for achieving high crop yields and economic benefits, but it has potential impacts on food safety, energy crisis and environmental...The application of fertilizer in agricultural production has become universally common for achieving high crop yields and economic benefits, but it has potential impacts on food safety, energy crisis and environmental pollution. Optimal management of fertilization is thus necessary for maintaining sustainable agriculture. Two-year(2013–2015) field experiment was conducted, in Yangling(108°24′E, 34°20′N, and 521 m a.s.l.), Shaanxi Province, China, to explore the effects of different nitrogen(N) applications on biomass accumulation, crop N uptake, nitrate N(NO_3~–-N) distribution, yield, and N use with a winter wheat/summer maize rotation system. The N applications consisted of conventional urea(U)(at 80(U80), 160(U160), and 240(U240) kg N ha^(–1); 40% applied as a basal fertilizer and 60% top-dressed at jointing stage) and controlled-release urea(CRU)(at 60(C60), 120(C120), 180(C180), and 240(C240) kg N ha~(^(–1)); all applied as a basal fertilizer) with no N application as a control(CK). The continuous release of N from CRU matched well with the N demands of crop throughout entire growing stages. Soil NO_3~–-N content varied less and peaked shallower in CRU than that in urea treatments. The differences, however, were smaller in winter wheat than that in summer maize seasons. The average yield of summer maize was the highest in C120 in CRU treatments and in U160 in urea treatments, and apparent N use efficiency(NUE) and N agronomic efficiency(NAE) were higher in C120 than in U160 by averages of 22.67 and 41.91%, respectively. The average yield of winter wheat was the highest in C180 in CRU treatments and in U240 in urea treatments with C180 increasing NUE and NAE by averages of 14.89 and 35.62% over U240, respectively. The annual yields under the two N fertilizers were the highest in C120 and U160. The results suggested that CRU as a basal fertilizer once could be a promising alternative of urea as split application in semiarid areas.展开更多
During January–February 2008, a severe ice storm caused significant damages to forests in southern China, creating canopy gaps and changing soil nutrient availability and enzyme activity. To understand the relationsh...During January–February 2008, a severe ice storm caused significant damages to forests in southern China, creating canopy gaps and changing soil nutrient availability and enzyme activity. To understand the relationships between gap size, changes in the soil environment and the effects that these changes have on soil processes, we investigated the effects of gap size on soil chemical and biological properties in the forest gaps in a Cunninghamia lanceolata stand in northern Guangdong Province, southern China. Ten naturally created gaps, five large(80–100 m^2) and five small(30–40 m^2), were selected in the stand of C.lanceolata. The large gaps showed a significant increase in light transmission ratio and air and soil temperatures and a decline in soil moisture, organic matter,N and P compared with the small gaps and the adjacent canopy-covered plots in the 0–10 cm soil. The differences in organic matter and nutrient levels found between the large and small gaps and the canopy-covered plots may be related to changes in environmental conditions. This indicated rapid litter decomposition and increased nutrient leaching in the large gaps. Moreover, the lowest levels of catalase, acid phosphatase and urease activities occurred in large gaps because of the decline in their soil fertility. Large forest gaps may have a region of poor fertility, reducing soil nutrient availability and enzyme activity within the C.lanceolata stand.展开更多
基金financially supported by the National High-Tech R&D Program of China(863 Program,2011AA100504)the Special Fund for Agro-scientific Research in the Public Interest of China(201503105 and 201503125)
文摘The application of fertilizer in agricultural production has become universally common for achieving high crop yields and economic benefits, but it has potential impacts on food safety, energy crisis and environmental pollution. Optimal management of fertilization is thus necessary for maintaining sustainable agriculture. Two-year(2013–2015) field experiment was conducted, in Yangling(108°24′E, 34°20′N, and 521 m a.s.l.), Shaanxi Province, China, to explore the effects of different nitrogen(N) applications on biomass accumulation, crop N uptake, nitrate N(NO_3~–-N) distribution, yield, and N use with a winter wheat/summer maize rotation system. The N applications consisted of conventional urea(U)(at 80(U80), 160(U160), and 240(U240) kg N ha^(–1); 40% applied as a basal fertilizer and 60% top-dressed at jointing stage) and controlled-release urea(CRU)(at 60(C60), 120(C120), 180(C180), and 240(C240) kg N ha~(^(–1)); all applied as a basal fertilizer) with no N application as a control(CK). The continuous release of N from CRU matched well with the N demands of crop throughout entire growing stages. Soil NO_3~–-N content varied less and peaked shallower in CRU than that in urea treatments. The differences, however, were smaller in winter wheat than that in summer maize seasons. The average yield of summer maize was the highest in C120 in CRU treatments and in U160 in urea treatments, and apparent N use efficiency(NUE) and N agronomic efficiency(NAE) were higher in C120 than in U160 by averages of 22.67 and 41.91%, respectively. The average yield of winter wheat was the highest in C180 in CRU treatments and in U240 in urea treatments with C180 increasing NUE and NAE by averages of 14.89 and 35.62% over U240, respectively. The annual yields under the two N fertilizers were the highest in C120 and U160. The results suggested that CRU as a basal fertilizer once could be a promising alternative of urea as split application in semiarid areas.
基金supported by the Foundation of Guangdong Forestry Bureau of China(Nos.F11031 and F15141)
文摘During January–February 2008, a severe ice storm caused significant damages to forests in southern China, creating canopy gaps and changing soil nutrient availability and enzyme activity. To understand the relationships between gap size, changes in the soil environment and the effects that these changes have on soil processes, we investigated the effects of gap size on soil chemical and biological properties in the forest gaps in a Cunninghamia lanceolata stand in northern Guangdong Province, southern China. Ten naturally created gaps, five large(80–100 m^2) and five small(30–40 m^2), were selected in the stand of C.lanceolata. The large gaps showed a significant increase in light transmission ratio and air and soil temperatures and a decline in soil moisture, organic matter,N and P compared with the small gaps and the adjacent canopy-covered plots in the 0–10 cm soil. The differences in organic matter and nutrient levels found between the large and small gaps and the canopy-covered plots may be related to changes in environmental conditions. This indicated rapid litter decomposition and increased nutrient leaching in the large gaps. Moreover, the lowest levels of catalase, acid phosphatase and urease activities occurred in large gaps because of the decline in their soil fertility. Large forest gaps may have a region of poor fertility, reducing soil nutrient availability and enzyme activity within the C.lanceolata stand.