Since existing selection methods of surgical treatment schemes of renal cancer patients mainly depend on physicians’clinical experience and judgments,the surgical treatment options of renal cancer patients lack their...Since existing selection methods of surgical treatment schemes of renal cancer patients mainly depend on physicians’clinical experience and judgments,the surgical treatment options of renal cancer patients lack their scientifical and reasonable information expression and group decision-making model for renal cancer patients.Fuzzy multi-sets(FMSs)have a number of properties,which make them suitable for expressing the uncertain information of medical diagnoses and treatments in group decision-making(GDM)problems.To choose the most appropriate surgical treatment scheme for a patient with localized renal cell carcinoma(RCC)(T1 stage kidney tumor),this article needs to develop an effective GDM model based on the fuzzy multivalued evaluation information of the renal cancer patients.First,we propose a conversionmethod of transforming FMSs into entropy fuzzy sets(EFSs)based on the mean and Shannon entropy of a fuzzy sequence in FMS to reasonably simplify the information expression and operations of FMSs and define the score function of an entropy fuzzy element(EFE)for ranking EFEs.Second,we present the Aczel-Alsina t-norm and t-conorm operations of EFEs and the EFE Aczel-Alsina weighted arithmetic averaging(EFEAAWAA)and EFE Aczel-Alsina weighted geometric averaging(EFEAAWGA)operators.Third,we develop a multicriteria GDM model of renal cancer surgery options in the setting of FMSs.Finally,the proposed GDM model is applied to two clinical cases of renal cancer patients to choose the best surgical treatment scheme for a renal cancer patient in the setting of FMSs.The selected results of two clinical cases verify the efficiency and rationality of the proposed GDM model in the setting of FMSs.展开更多
We analyze oxidative activity of DNA due to fluorescence of chromosomes inside cells, using flow cytometry method with nanometer spatial resolution. Statistics of fluorescence is presented in histogram as frequency di...We analyze oxidative activity of DNA due to fluorescence of chromosomes inside cells, using flow cytometry method with nanometer spatial resolution. Statistics of fluorescence is presented in histogram as frequency distributions of flashes in the dependence on their intensity and in distributions of Shannon entropy, which was defined on the base of normalized distribution of information in original histogram for frequency of flashes. We show that overall sum of entropy, i.e. total entropy E , for any histogram is invariant and has identical trends of changes all values of E(r) = lnr at reduction of histogram’ rank r. This invariance reflects informational homeostasis of chromosomes activity in multi-scale networks of entropy inside all cells in various samples of blood for DNA inside neutrophils, lymphocytes, inside all leukocytes of human and inside chicken erythrocytes for various dyes, colors and various excitations of fluorescence. Informational homeostasis of oxidative activity of 3D DNA in the full set of chromosomes inside living cells exists for any Shannon-Weaver index of biodiversity of cells, at any state of health different beings. Regulation perturbations in information activity DNA provides informational adaptability and vitality of cells at homeostasis support. Noises of entropy, during regulation of informational homeostasis, depend on the states of health in real time. The main structural reconstructions of chromosomal correlations, corresponding to self-regulation of homeostasis, occur in the most large-scale networks of entropy, for rank r<32. We show that stability of homeostasis is supported by activity of all 46 chromosomes inside cells. Patterns, hidden switching and branching in sequences of averages of H?lder and central moments for noises in regulation of homeostasis define new opportunities in diagnostics of health and immunity. All people and all aerobic beings have one overall homeostatic level for countdown of information activity of DNA inside cells. We noted very bad and dangerous properties of artificial cells with other levels of informational homeostasis for all aerobic beings in foods, medical treatment and in biotechnologies.展开更多
Mobile Crowd Sensing(MCS)is an emerging paradigm that leverages sensor-equipped smart devices to collect data.The introduction of MCS also poses some challenges such as providing highquality data for upper layer MCS a...Mobile Crowd Sensing(MCS)is an emerging paradigm that leverages sensor-equipped smart devices to collect data.The introduction of MCS also poses some challenges such as providing highquality data for upper layer MCS applications,which requires adequate participants.However,recruiting enough participants to provide the sensing data for free is hard for the MCS platform under a limited budget,which may lead to a low coverage ratio of sensing area.This paper proposes a novel method to choose participants uniformly distributed in a specific sensing area based on the mobility patterns of mobile users.The method consists of two steps:(1)A second-order Markov chain is used to predict the next positions of users,and select users whose next places are in the target sensing area to form a candidate pool.(2)The Average Entropy(DAE)is proposed to measure the distribution of participants.The participant maximizing the DAE value of a specific sensing area with different granular sub-areas is chosen to maximize the coverage ratio of the sensing area.Experimental results show that the proposed method can maximize the coverage ratio of a sensing area under different partition granularities.展开更多
The Page curve plotted using the typical random state approximation is not applicable to a system with conserved quantities,such as the evaporation process of a charged black hole,during which the electric charge does...The Page curve plotted using the typical random state approximation is not applicable to a system with conserved quantities,such as the evaporation process of a charged black hole,during which the electric charge does not macroscopically radiate out with a uniform rate.In this context,the symmetry-resolved entanglement entropy may play a significant role in describing the entanglement structure of such a system.We attempt to impose constraints on microscopic quantum states to match the macroscopic phenomenon of charge radiation during black hole evaporation.Specifically,we consider a simple qubit system with conserved spin/charge serving as a toy model for the evaporation of charged black holes.We propose refined rules for selecting a random state with conserved quantities to simulate the distribution of charges during the different stages of evaporation and obtain refined Page curves that exhibit distinct features in contrast to the original Page curve.We find that the refined Page curve may have a different Page time and exhibit asymmetric behavior on both sides of the Page time.Such refined Page curves may provide a more realistic description for the entanglement between the charged black hole and radiation during the evaporation process.展开更多
基金This study has received funding by the Science and Technology Plan Project of Keqiao District(No.2020KZ58).
文摘Since existing selection methods of surgical treatment schemes of renal cancer patients mainly depend on physicians’clinical experience and judgments,the surgical treatment options of renal cancer patients lack their scientifical and reasonable information expression and group decision-making model for renal cancer patients.Fuzzy multi-sets(FMSs)have a number of properties,which make them suitable for expressing the uncertain information of medical diagnoses and treatments in group decision-making(GDM)problems.To choose the most appropriate surgical treatment scheme for a patient with localized renal cell carcinoma(RCC)(T1 stage kidney tumor),this article needs to develop an effective GDM model based on the fuzzy multivalued evaluation information of the renal cancer patients.First,we propose a conversionmethod of transforming FMSs into entropy fuzzy sets(EFSs)based on the mean and Shannon entropy of a fuzzy sequence in FMS to reasonably simplify the information expression and operations of FMSs and define the score function of an entropy fuzzy element(EFE)for ranking EFEs.Second,we present the Aczel-Alsina t-norm and t-conorm operations of EFEs and the EFE Aczel-Alsina weighted arithmetic averaging(EFEAAWAA)and EFE Aczel-Alsina weighted geometric averaging(EFEAAWGA)operators.Third,we develop a multicriteria GDM model of renal cancer surgery options in the setting of FMSs.Finally,the proposed GDM model is applied to two clinical cases of renal cancer patients to choose the best surgical treatment scheme for a renal cancer patient in the setting of FMSs.The selected results of two clinical cases verify the efficiency and rationality of the proposed GDM model in the setting of FMSs.
文摘We analyze oxidative activity of DNA due to fluorescence of chromosomes inside cells, using flow cytometry method with nanometer spatial resolution. Statistics of fluorescence is presented in histogram as frequency distributions of flashes in the dependence on their intensity and in distributions of Shannon entropy, which was defined on the base of normalized distribution of information in original histogram for frequency of flashes. We show that overall sum of entropy, i.e. total entropy E , for any histogram is invariant and has identical trends of changes all values of E(r) = lnr at reduction of histogram’ rank r. This invariance reflects informational homeostasis of chromosomes activity in multi-scale networks of entropy inside all cells in various samples of blood for DNA inside neutrophils, lymphocytes, inside all leukocytes of human and inside chicken erythrocytes for various dyes, colors and various excitations of fluorescence. Informational homeostasis of oxidative activity of 3D DNA in the full set of chromosomes inside living cells exists for any Shannon-Weaver index of biodiversity of cells, at any state of health different beings. Regulation perturbations in information activity DNA provides informational adaptability and vitality of cells at homeostasis support. Noises of entropy, during regulation of informational homeostasis, depend on the states of health in real time. The main structural reconstructions of chromosomal correlations, corresponding to self-regulation of homeostasis, occur in the most large-scale networks of entropy, for rank r<32. We show that stability of homeostasis is supported by activity of all 46 chromosomes inside cells. Patterns, hidden switching and branching in sequences of averages of H?lder and central moments for noises in regulation of homeostasis define new opportunities in diagnostics of health and immunity. All people and all aerobic beings have one overall homeostatic level for countdown of information activity of DNA inside cells. We noted very bad and dangerous properties of artificial cells with other levels of informational homeostasis for all aerobic beings in foods, medical treatment and in biotechnologies.
基金supported by the Open Foundation of State key Laboratory of Networking and Switching Technology(Beijing University of Posts and Telecommunications)(SKLNST-2021-1-18)the General Program of Natural Science Foundation of Chongqing(cstc2020jcyj-msxmX1021)+1 种基金the Science and Technology Research Program of Chongqing Municipal Education Commission(KJZD-K202000602)Chongqing graduate research and innovation project(CYS22478).
文摘Mobile Crowd Sensing(MCS)is an emerging paradigm that leverages sensor-equipped smart devices to collect data.The introduction of MCS also poses some challenges such as providing highquality data for upper layer MCS applications,which requires adequate participants.However,recruiting enough participants to provide the sensing data for free is hard for the MCS platform under a limited budget,which may lead to a low coverage ratio of sensing area.This paper proposes a novel method to choose participants uniformly distributed in a specific sensing area based on the mobility patterns of mobile users.The method consists of two steps:(1)A second-order Markov chain is used to predict the next positions of users,and select users whose next places are in the target sensing area to form a candidate pool.(2)The Average Entropy(DAE)is proposed to measure the distribution of participants.The participant maximizing the DAE value of a specific sensing area with different granular sub-areas is chosen to maximize the coverage ratio of the sensing area.Experimental results show that the proposed method can maximize the coverage ratio of a sensing area under different partition granularities.
基金Supported in part by the Natural Science Foundation of China(12035016,12275275)supported by the Beijing Natural Science Foundation(122031)the Innovative Projects of Science and Technology(E2545BU210)at IHEP.
文摘The Page curve plotted using the typical random state approximation is not applicable to a system with conserved quantities,such as the evaporation process of a charged black hole,during which the electric charge does not macroscopically radiate out with a uniform rate.In this context,the symmetry-resolved entanglement entropy may play a significant role in describing the entanglement structure of such a system.We attempt to impose constraints on microscopic quantum states to match the macroscopic phenomenon of charge radiation during black hole evaporation.Specifically,we consider a simple qubit system with conserved spin/charge serving as a toy model for the evaporation of charged black holes.We propose refined rules for selecting a random state with conserved quantities to simulate the distribution of charges during the different stages of evaporation and obtain refined Page curves that exhibit distinct features in contrast to the original Page curve.We find that the refined Page curve may have a different Page time and exhibit asymmetric behavior on both sides of the Page time.Such refined Page curves may provide a more realistic description for the entanglement between the charged black hole and radiation during the evaporation process.