Semitransparent organic solar cells(ST-OSCs)have garnered considerable attention as promising renewable energy technology for integrating photovoltaics into buildings.However,there is a trade-off between power convers...Semitransparent organic solar cells(ST-OSCs)have garnered considerable attention as promising renewable energy technology for integrating photovoltaics into buildings.However,there is a trade-off between power conversion efficiency(PCE)and average visible transmittance(AVT),which hinders the achievement of a high light utilization efficiency(LUE).In this study,we propose a valuable method to address this challenge by replacing the transparent top electrode,Ag,with a 20 nm layer of Au.The ST-OSCs based on the 20 nm Au electrode demonstrate superior exciton extraction,more efficient charge collection,and higher color-rendering index(CRI)due to their smoother surface,higher conductivity,and enhanced visible light transmittance,resulting in a significantly higher PCE of 13.67%and an enhanced AVT of 30.17%,contributing to a high LUE of 4.15%.Additionally,optically transparent dielectric layers,applied on the front and back sides of the ST-OSCs to further boost performance,delivered an impressive LUE of 4.93%,with PCE and AVT values reaching 14.44%and 34.12%,respectively.Notably,the champion ST-OSCs also exhibited a favorable CRI value of 93.37.These achievements represent the bestperforming ST-OSCs to date with both high LUE and CRI and hold significant implications for the prospective commercialization of ST-OSCs.展开更多
基金financially supported from the National Natural Science Foundation of China(5220235)academic funding supported by Soochow University(NH10900123)+1 种基金the Gusu Innovation and Entrepreneurship Leading Talents Program(ZXL2023184)the Natural Science Foundation of Jiangsu Higher Education Institutions of China(22KJB150033)。
文摘Semitransparent organic solar cells(ST-OSCs)have garnered considerable attention as promising renewable energy technology for integrating photovoltaics into buildings.However,there is a trade-off between power conversion efficiency(PCE)and average visible transmittance(AVT),which hinders the achievement of a high light utilization efficiency(LUE).In this study,we propose a valuable method to address this challenge by replacing the transparent top electrode,Ag,with a 20 nm layer of Au.The ST-OSCs based on the 20 nm Au electrode demonstrate superior exciton extraction,more efficient charge collection,and higher color-rendering index(CRI)due to their smoother surface,higher conductivity,and enhanced visible light transmittance,resulting in a significantly higher PCE of 13.67%and an enhanced AVT of 30.17%,contributing to a high LUE of 4.15%.Additionally,optically transparent dielectric layers,applied on the front and back sides of the ST-OSCs to further boost performance,delivered an impressive LUE of 4.93%,with PCE and AVT values reaching 14.44%and 34.12%,respectively.Notably,the champion ST-OSCs also exhibited a favorable CRI value of 93.37.These achievements represent the bestperforming ST-OSCs to date with both high LUE and CRI and hold significant implications for the prospective commercialization of ST-OSCs.