For developing efficient vaccines, it is essential to identify which amino acid changes are most important to the survival of the virus. We investigate the amino acid substitution features in the Avian Infectious Bron...For developing efficient vaccines, it is essential to identify which amino acid changes are most important to the survival of the virus. We investigate the amino acid substitution features in the Avian Infectious Bronchitis Virus (AIBV) antigenic domain of a vaccine serotype (DE072) and a virulent viral strain (GA98) to better understand adaptive evolution of AIBV. In addition, the SARS Coronavirus (SARS-CoV) was also analyzed in the same way. It is interesting to find that extreme comparability exists between AIBV and SARS in amino acid substitution pattern. It suggests that amino acid changes that result in overall shift of residue charge and polarity should be paid special attention to during the development of vaccines.展开更多
The small envelope protein (E) gene of avian infectious bronchitis virus (IBV) M41 strain was cloned, and then it was subcloned into prokaryotic expressing vector pGEX-6P-1. The recombinant plasmid was transformed...The small envelope protein (E) gene of avian infectious bronchitis virus (IBV) M41 strain was cloned, and then it was subcloned into prokaryotic expressing vector pGEX-6P-1. The recombinant plasmid was transformed into E.coli. BL21 and induced by IPTG. SDS-PAGE result showed that when objective protein fused with GST (about 20 ku), the relative molecular mass of fusion protein was 38 ku. It indicated that objective protein was about 12.4 ku. The result showed that E protein was expressed successfully, it was useful to the subsequent E protein research.展开更多
[ Objective] The aim was to isolate and identify avian infectious bronchitis virus (IBV) from diseased chickens. [ Method] IBVs were iso- lated from the diseased chickens in a chicken farm in Anhui Province with bli...[ Objective] The aim was to isolate and identify avian infectious bronchitis virus (IBV) from diseased chickens. [ Method] IBVs were iso- lated from the diseased chickens in a chicken farm in Anhui Province with blind passage method to observe virus pathogenicity. Then animal regres- sion test was made to replicate symptoms of bronchial congestion in SPF chickens and S1 gene segments were amplified and isolated, followed by comparison with IBV vaccine strains. [ Result] Detection of Hemagglutinating activity (HA) showed that allantoic fluid had no concerning effect on erythrocyte, suggesting that NDV and AIV were not included in the isolated viruses. However, the erythrocyte could be agglutinated with allantoic fluid treated with 1% of pancreatin, which is in consistent with biological characters of IBV. After SPF chickens were inoculated with the 6^th SPF al- lantoic fluid, bronchial congestion was replicated, proving that the isolated virus was avian IBV, named IBV XZ strain. [ Conclusion] This study pro- vides a theoretical basis for prevention of avian infectious bronchitis.展开更多
[ Objective] The aim was to to establish a kind of peculiar, sensitive and quick fluorescent PCR detection method. [Method] A peculiar, sensitive and quick method of fluorescent PCR detection for avian infectious bron...[ Objective] The aim was to to establish a kind of peculiar, sensitive and quick fluorescent PCR detection method. [Method] A peculiar, sensitive and quick method of fluorescent PCR detection for avian infectious bronchitis virus was established, the standard curve was built, specific primers, susceptibility and repeatability was detected. [ Result] This method diagnosed avian infectious bronchitis virus peculiarly, sensitively and quickly, simple and easy to use, time short, suitable for clinical testing. [ Conclusion] This research laid the foundation to diagnose avian infectious bronchitis virus.展开更多
Dear Editor,Infectious bronchitis(IB),one of the most common and difficult poultry diseases,is caused by a gammacoronavirus named infectious bronchitis virus(IBV).IBV frequently causes respiratory and/or renal disease...Dear Editor,Infectious bronchitis(IB),one of the most common and difficult poultry diseases,is caused by a gammacoronavirus named infectious bronchitis virus(IBV).IBV frequently causes respiratory and/or renal diseases in chickens and egg production losses in hens.IB has展开更多
H9 s ubtype avian influenza virus(AIV) and infectious bronchitis virus(IBV) are major pathogens circulating in poultry and have resulted in great economic losses due to respiratory disease and reduced egg producti...H9 s ubtype avian influenza virus(AIV) and infectious bronchitis virus(IBV) are major pathogens circulating in poultry and have resulted in great economic losses due to respiratory disease and reduced egg production. As similar symptoms are elicited by the two pathogens, it is difficult for their differential diagnosis. So far, no reverse transcription-polymerase chain reaction(RT-PCR) assay has been found to differentiate between H9 AIV and IBV in one reaction. Therefore, developing a sensitive and specific method is of importance to simultaneously detect and differentiate H9 AIV and IBV. In this study, a duplex RT-PCR(d RT-PCR) was established. Two primer sets target the hemagglutinin(HA) gene of H9 AIV and the nucleocapsid(N) gene of IBV, respectively. Spec ific PCR products were obtained from all tested H9 AIVs and IBVs belonging to the major clades circulating in China, but not from AIVs of other subtypes or other infectious avian viruses. The sensitivity of the d RT-PCR assay corresponding to H9 AIV, IBV and mixture of H9 AIV and IBV were at a concentration of 1×10^1, 1.5×10^1 and 1.5×10^1 50% egg infective doses(EID_(50)) m L^–1, respectively. The concordance rates between the d RT-PCR and virus isolation were 99.1 and 98.2%, respectively, for detection of samples from H9N2 AIV or IBV infected chickens, while the concordance rate was 99.1% for detection of samples from H9N2 AIV and IBV co-infected chickens. Thus, the d RT-PCR assay reported herein is specific and sensitive, and suitable for the differential diagnosis of clinical infections and survei llance of H9 AIVs and IBVs.展开更多
[Objective] To study the prokaryotic expression and antigenicity identification of S1 gene from avian infectious bronchitis virus (IBV). [Method] The S1 gene was cloned into a pMD18-T vector to yield a recombinant p...[Objective] To study the prokaryotic expression and antigenicity identification of S1 gene from avian infectious bronchitis virus (IBV). [Method] The S1 gene was cloned into a pMD18-T vector to yield a recombinant plasmids pMD18-T-IBV-S1. Then S1 gene was inserted into the multiple cloning site of a prokaryotic expression vector pET-32a ( + ). The recombinant plasmid was transformed into E. coil BL21. The recombinant protein was induced by IPTG and measured by SDS-PAGE and western-blotting. [Result] The S1 gene was successfully expressed in E. coil BL21, the fusion proteins were about 66.0 kDa in a form of inclusion body. Western-blotting test showed that the recombinant proteins could be identified by IBV polyclonal antibody. [ Conclusion] The recombinant proteins of S1 gene have the antigenicity, which lays a good foundation for further research on new generation vaccine of IBV.展开更多
文摘For developing efficient vaccines, it is essential to identify which amino acid changes are most important to the survival of the virus. We investigate the amino acid substitution features in the Avian Infectious Bronchitis Virus (AIBV) antigenic domain of a vaccine serotype (DE072) and a virulent viral strain (GA98) to better understand adaptive evolution of AIBV. In addition, the SARS Coronavirus (SARS-CoV) was also analyzed in the same way. It is interesting to find that extreme comparability exists between AIBV and SARS in amino acid substitution pattern. It suggests that amino acid changes that result in overall shift of residue charge and polarity should be paid special attention to during the development of vaccines.
文摘The small envelope protein (E) gene of avian infectious bronchitis virus (IBV) M41 strain was cloned, and then it was subcloned into prokaryotic expressing vector pGEX-6P-1. The recombinant plasmid was transformed into E.coli. BL21 and induced by IPTG. SDS-PAGE result showed that when objective protein fused with GST (about 20 ku), the relative molecular mass of fusion protein was 38 ku. It indicated that objective protein was about 12.4 ku. The result showed that E protein was expressed successfully, it was useful to the subsequent E protein research.
文摘[ Objective] The aim was to isolate and identify avian infectious bronchitis virus (IBV) from diseased chickens. [ Method] IBVs were iso- lated from the diseased chickens in a chicken farm in Anhui Province with blind passage method to observe virus pathogenicity. Then animal regres- sion test was made to replicate symptoms of bronchial congestion in SPF chickens and S1 gene segments were amplified and isolated, followed by comparison with IBV vaccine strains. [ Result] Detection of Hemagglutinating activity (HA) showed that allantoic fluid had no concerning effect on erythrocyte, suggesting that NDV and AIV were not included in the isolated viruses. However, the erythrocyte could be agglutinated with allantoic fluid treated with 1% of pancreatin, which is in consistent with biological characters of IBV. After SPF chickens were inoculated with the 6^th SPF al- lantoic fluid, bronchial congestion was replicated, proving that the isolated virus was avian IBV, named IBV XZ strain. [ Conclusion] This study pro- vides a theoretical basis for prevention of avian infectious bronchitis.
基金Funds for the Central Universities of Dalian Nationalities University (DC12010304)
文摘[ Objective] The aim was to to establish a kind of peculiar, sensitive and quick fluorescent PCR detection method. [Method] A peculiar, sensitive and quick method of fluorescent PCR detection for avian infectious bronchitis virus was established, the standard curve was built, specific primers, susceptibility and repeatability was detected. [ Result] This method diagnosed avian infectious bronchitis virus peculiarly, sensitively and quickly, simple and easy to use, time short, suitable for clinical testing. [ Conclusion] This research laid the foundation to diagnose avian infectious bronchitis virus.
基金supported in part through BattelleMemorial Institute’s prime contract with the US National Institute of Allergy and Infectious Diseases(NIAID)under Contract No.HHSN272200700016I
文摘Dear Editor,Infectious bronchitis(IB),one of the most common and difficult poultry diseases,is caused by a gammacoronavirus named infectious bronchitis virus(IBV).IBV frequently causes respiratory and/or renal diseases in chickens and egg production losses in hens.IB has
基金supported by the National High-Tech R&D Program of China(2012AA101303)
文摘H9 s ubtype avian influenza virus(AIV) and infectious bronchitis virus(IBV) are major pathogens circulating in poultry and have resulted in great economic losses due to respiratory disease and reduced egg production. As similar symptoms are elicited by the two pathogens, it is difficult for their differential diagnosis. So far, no reverse transcription-polymerase chain reaction(RT-PCR) assay has been found to differentiate between H9 AIV and IBV in one reaction. Therefore, developing a sensitive and specific method is of importance to simultaneously detect and differentiate H9 AIV and IBV. In this study, a duplex RT-PCR(d RT-PCR) was established. Two primer sets target the hemagglutinin(HA) gene of H9 AIV and the nucleocapsid(N) gene of IBV, respectively. Spec ific PCR products were obtained from all tested H9 AIVs and IBVs belonging to the major clades circulating in China, but not from AIVs of other subtypes or other infectious avian viruses. The sensitivity of the d RT-PCR assay corresponding to H9 AIV, IBV and mixture of H9 AIV and IBV were at a concentration of 1×10^1, 1.5×10^1 and 1.5×10^1 50% egg infective doses(EID_(50)) m L^–1, respectively. The concordance rates between the d RT-PCR and virus isolation were 99.1 and 98.2%, respectively, for detection of samples from H9N2 AIV or IBV infected chickens, while the concordance rate was 99.1% for detection of samples from H9N2 AIV and IBV co-infected chickens. Thus, the d RT-PCR assay reported herein is specific and sensitive, and suitable for the differential diagnosis of clinical infections and survei llance of H9 AIVs and IBVs.
基金supported by Science and Technology Star Project of Beijing (2005B35)
文摘[Objective] To study the prokaryotic expression and antigenicity identification of S1 gene from avian infectious bronchitis virus (IBV). [Method] The S1 gene was cloned into a pMD18-T vector to yield a recombinant plasmids pMD18-T-IBV-S1. Then S1 gene was inserted into the multiple cloning site of a prokaryotic expression vector pET-32a ( + ). The recombinant plasmid was transformed into E. coil BL21. The recombinant protein was induced by IPTG and measured by SDS-PAGE and western-blotting. [Result] The S1 gene was successfully expressed in E. coil BL21, the fusion proteins were about 66.0 kDa in a form of inclusion body. Western-blotting test showed that the recombinant proteins could be identified by IBV polyclonal antibody. [ Conclusion] The recombinant proteins of S1 gene have the antigenicity, which lays a good foundation for further research on new generation vaccine of IBV.