Puccinia striiformis f. sp. tritici (Pst) is one of the pathogenic fungi on wheat, caused stripe rust that is a great threat for wheat production all over the world. Intensive efforts have been made to study genetics ...Puccinia striiformis f. sp. tritici (Pst) is one of the pathogenic fungi on wheat, caused stripe rust that is a great threat for wheat production all over the world. Intensive efforts have been made to study genetics of wheat resistance to this disease, but few on avirulence of the pathogen due mainly to the nature of obligate biotrophism and the lack of systems for studying its genetics and molecular manipulations. To overcome these limitations, a natural Pst population comprising 352 isolates representative of a diverse virulence spectrum was genotyped using 97 secreted protein-single nucleotide polymorphism (SP-SNP) markers to identify candidate avirulence genes using association analysis. Among avirulence genes corresponding to 19 resistance genes, significantly associated SP-SNP markers were detected for avirulence genes AvYr1, AvYr2, AvYr6, AvYr7, AvYr8, AvYr44, AvYrExp2, AvYrSP, and AvYrTye. These results indicate that association analysis can be used to identify markers for avirulence genes. This study has laid the foundation for developing more SP-SNPs for mapping avirulence genes using segregating populations that can be generated through sexual reproduction on alternate hosts of the pathogen.展开更多
Knowledge of the geographic distribution and frequency of avirulence genes will contribute to the development of strategies to effectively use rice varieties that carry various resistances genes, including combination...Knowledge of the geographic distribution and frequency of avirulence genes will contribute to the development of strategies to effectively use rice varieties that carry various resistances genes, including combinations of varieties in mixture cropping systems. Here, we analyzed the geographic distribution and frequencies of avirulence genes in rice blast fungus using samples collected from 11 prefectures across Yunnan province, China. A total of 467 single spore isolates were assayed for pathotypes based on their reaction to 20 rice blast resistance monogenic lines. The results revealed that frequencies of avirulence genes among 10 prefectures showed insignificant difference, but frequencies of avirulenee genes in Xishuangbanna showed significant differences compared to the remaining 10 prefectures. The avirulence genes Avr-Pi9, Avr-Piz and Avr-Pizt were observed at the highest frequency in blast isolates from the 11 prefectures; their average frequency was greater than 80%. Our results imply that the composition and distribution of rice genetic diversity are more important than climate and other environment conditions for formation and maintenance of rice blast fungus genetic diversity. Using average frequencies, the avirulence genes can be categorized into 4 groups. There were significant differences of frequencies of avirulence genes among different groups, while insignificant differences observed within any group. These results will provide useful information for evaluation of resistance genes and effective management of rice blast disease.展开更多
Rice blast disease, caused by Magnaporthe oryzae, threatens global food security. The rice blast pathosystem is a longstanding model system for understanding plant-microbe interactions. In order to elucidate the coevo...Rice blast disease, caused by Magnaporthe oryzae, threatens global food security. The rice blast pathosystem is a longstanding model system for understanding plant-microbe interactions. In order to elucidate the coevolution of the host and pathogen, and provide the appropriate methods for preventing or controlling rice blast disease, researchers have focused on the evolution of virulence factors and resistance genes. Thus far, more than 30 rice blast resistance(R) genes and 12 avirulence(Avr) genes have been cloned. This review summarizes the cloned rice blast R genes, cloned Avr genes of M. oryzae and the interaction between them. This discussion also considers some of the major unanswered questions concerning this pathosystem and the opportunities for future investigations.展开更多
Understanding the sequence diversity of rice blast resistance genes is important for breeding new resistant rice cultivars against the rice blast fungusMagnaporthe oryzae. In this study, we selected 24 rice cultivars ...Understanding the sequence diversity of rice blast resistance genes is important for breeding new resistant rice cultivars against the rice blast fungusMagnaporthe oryzae. In this study, we selected 24 rice cultivars with different genetic back-grounds to study the alelic diversity of rice blast resistance genesPiz-t, Pitaand Pik. For Piz-t, a total of 17 alelic types were found within the 24 cultivars. Blast inoculations showed that most of the mutations can affect the function of the resistance gene. For Pita, except for the difference at the 918th amino acid, a majority of the 21 mutations were detected among the cultivars. Inoculations with blast isolates carryingAvr-Pita revealed that cultivars with mutations in other sites except for the 918th amino acid did not affect the function of thePita gene. ForPik, a total of six alelic types were found within the 24 cultivars, but ifve of them lost the function of the resistance gene. In addition, we found thatPiz-t, Pita and Pik were expressed constitutively in the 24 rice cultivars and the expression level was not related to resistance. Our results have provided the sequence diversity information of the resistance genesPiz-t, Pita and Pik among the popular rice cultivars grown in the northeast region of China. Keywords:resistance gene, avirulence gene, aleles, function, genetic evolution zae(M. oryzae), is one of the most destructive diseases in rice production worldwide. Over the years, comprehensive studies on rice blast resistance have been conducted (Silue et al. 1992). The resistance in newly cultivated rice cultivars to M. oryzae can be lost quickly due to the high level of instability in the genome of the fungus (Bonmanet al. 1992). Previous studies show that cultivars with durable and broad-spectrum resistance againstM. oryzae carry multiple major resistance (R) and minor resistance genes (Liuet al. 2014). An effective way to control rice blast disease is, therefore, to breed rice cultivars with multiple R and QTL genes. To date, over 83 rice blast R genes have been identiifed, and are distributed on 11 rice chromosomes except Received 22 May, 2015 Accepted 26 October, 2015 WANG Yan, E-mail: 8806wy@163.com; Correspondence LIU Zhi-heng, Tel: +86-24-23738857, E-mail: lzhh1954@163.com; ZHENG Wen-jing, Tel: +86-24-31021081, E-mail: zwj27@126. com *These authors contributed equaly to this study. ? 2016, CAAS. Al rights reserved. Published by Elsevier Ltd. doi: 10.1016/S2095-3119(15)61207-2 1. Introduction Rice blast disease, caused by the fungusMagnaporthe ory-展开更多
Genome dynamics of pathogenic organisms are driven by plant host and pathogenic organism co-evolution, in which patho- gen genomes areused to overcome stresses imposed by hosts with various genetic backgrounds through...Genome dynamics of pathogenic organisms are driven by plant host and pathogenic organism co-evolution, in which patho- gen genomes areused to overcome stresses imposed by hosts with various genetic backgrounds through generation of a range of field isolates. This model also applies to the rice host and its fungal pathogen Magnaporthe oryzae. To better understand genetic variation of M. oryzae in nature, the field isolate V86010 from the Philippines was sequenced and ana- lyzed. Genome annotation found that the assembled V86010 genome was composed of 1 931 scaffolds with a combined length of 38.9 Mb. The average GC ratio is 51.3% and repetitive elements constitute 5.1% of the genome. A total of 11 857 genes including 616 effector protein genes were predicted using a combined analysis pipeline. All predicted genes and effector protein genes of isolate V86010 distribute on the eight chromosomes when aligned with the assembled genome of isolate 70-15. Effector protein genes are located disproportionately at several chromosomal ends. The Pot2 elements are abundant in V86010. Seven V86010-specific effector proteins were found to suppress programmed cell death induced by BAX in tobacco leaves using an Agrobacterium-mediated transient assay. Our results may provide useful information for further study of the molecular and genomic dynamics in the evolution of M. oryzae and rice host interactions, and for characterizing novel effectors and AVR genes in the rice blast pathogen.展开更多
文摘Puccinia striiformis f. sp. tritici (Pst) is one of the pathogenic fungi on wheat, caused stripe rust that is a great threat for wheat production all over the world. Intensive efforts have been made to study genetics of wheat resistance to this disease, but few on avirulence of the pathogen due mainly to the nature of obligate biotrophism and the lack of systems for studying its genetics and molecular manipulations. To overcome these limitations, a natural Pst population comprising 352 isolates representative of a diverse virulence spectrum was genotyped using 97 secreted protein-single nucleotide polymorphism (SP-SNP) markers to identify candidate avirulence genes using association analysis. Among avirulence genes corresponding to 19 resistance genes, significantly associated SP-SNP markers were detected for avirulence genes AvYr1, AvYr2, AvYr6, AvYr7, AvYr8, AvYr44, AvYrExp2, AvYrSP, and AvYrTye. These results indicate that association analysis can be used to identify markers for avirulence genes. This study has laid the foundation for developing more SP-SNPs for mapping avirulence genes using segregating populations that can be generated through sexual reproduction on alternate hosts of the pathogen.
基金supported by the National Natural Science Fund (30860161)National Basic Research Program (No. 2011CB100400)The Ministry of Science and Technology of China,the Natural Science Fund (2010ZC173)
文摘Knowledge of the geographic distribution and frequency of avirulence genes will contribute to the development of strategies to effectively use rice varieties that carry various resistances genes, including combinations of varieties in mixture cropping systems. Here, we analyzed the geographic distribution and frequencies of avirulence genes in rice blast fungus using samples collected from 11 prefectures across Yunnan province, China. A total of 467 single spore isolates were assayed for pathotypes based on their reaction to 20 rice blast resistance monogenic lines. The results revealed that frequencies of avirulence genes among 10 prefectures showed insignificant difference, but frequencies of avirulenee genes in Xishuangbanna showed significant differences compared to the remaining 10 prefectures. The avirulence genes Avr-Pi9, Avr-Piz and Avr-Pizt were observed at the highest frequency in blast isolates from the 11 prefectures; their average frequency was greater than 80%. Our results imply that the composition and distribution of rice genetic diversity are more important than climate and other environment conditions for formation and maintenance of rice blast fungus genetic diversity. Using average frequencies, the avirulence genes can be categorized into 4 groups. There were significant differences of frequencies of avirulence genes among different groups, while insignificant differences observed within any group. These results will provide useful information for evaluation of resistance genes and effective management of rice blast disease.
基金support from the National Natural Science Foundation of China (U1405212)the National Key Research and Development Program of China (2016YFD0300707)+1 种基金the Natural Science Foundation of Fujian Province, China (2017J01618)the 100 Talent Project from Fujian Province to Dr.Daniel J.Ebbole (Texas A&M University, USA)
文摘Rice blast disease, caused by Magnaporthe oryzae, threatens global food security. The rice blast pathosystem is a longstanding model system for understanding plant-microbe interactions. In order to elucidate the coevolution of the host and pathogen, and provide the appropriate methods for preventing or controlling rice blast disease, researchers have focused on the evolution of virulence factors and resistance genes. Thus far, more than 30 rice blast resistance(R) genes and 12 avirulence(Avr) genes have been cloned. This review summarizes the cloned rice blast R genes, cloned Avr genes of M. oryzae and the interaction between them. This discussion also considers some of the major unanswered questions concerning this pathosystem and the opportunities for future investigations.
基金supported by the National Natural Science Foundation of China (31571993)the Natural Science Foundation of Liaoning Province of China (2014027027 and 2013020074)the Doctoral Fund of Liaoning Province of China (20131053)
文摘Understanding the sequence diversity of rice blast resistance genes is important for breeding new resistant rice cultivars against the rice blast fungusMagnaporthe oryzae. In this study, we selected 24 rice cultivars with different genetic back-grounds to study the alelic diversity of rice blast resistance genesPiz-t, Pitaand Pik. For Piz-t, a total of 17 alelic types were found within the 24 cultivars. Blast inoculations showed that most of the mutations can affect the function of the resistance gene. For Pita, except for the difference at the 918th amino acid, a majority of the 21 mutations were detected among the cultivars. Inoculations with blast isolates carryingAvr-Pita revealed that cultivars with mutations in other sites except for the 918th amino acid did not affect the function of thePita gene. ForPik, a total of six alelic types were found within the 24 cultivars, but ifve of them lost the function of the resistance gene. In addition, we found thatPiz-t, Pita and Pik were expressed constitutively in the 24 rice cultivars and the expression level was not related to resistance. Our results have provided the sequence diversity information of the resistance genesPiz-t, Pita and Pik among the popular rice cultivars grown in the northeast region of China. Keywords:resistance gene, avirulence gene, aleles, function, genetic evolution zae(M. oryzae), is one of the most destructive diseases in rice production worldwide. Over the years, comprehensive studies on rice blast resistance have been conducted (Silue et al. 1992). The resistance in newly cultivated rice cultivars to M. oryzae can be lost quickly due to the high level of instability in the genome of the fungus (Bonmanet al. 1992). Previous studies show that cultivars with durable and broad-spectrum resistance againstM. oryzae carry multiple major resistance (R) and minor resistance genes (Liuet al. 2014). An effective way to control rice blast disease is, therefore, to breed rice cultivars with multiple R and QTL genes. To date, over 83 rice blast R genes have been identiifed, and are distributed on 11 rice chromosomes except Received 22 May, 2015 Accepted 26 October, 2015 WANG Yan, E-mail: 8806wy@163.com; Correspondence LIU Zhi-heng, Tel: +86-24-23738857, E-mail: lzhh1954@163.com; ZHENG Wen-jing, Tel: +86-24-31021081, E-mail: zwj27@126. com *These authors contributed equaly to this study. ? 2016, CAAS. Al rights reserved. Published by Elsevier Ltd. doi: 10.1016/S2095-3119(15)61207-2 1. Introduction Rice blast disease, caused by the fungusMagnaporthe ory-
基金supported by the grants from the National Natural Science Foundation of China (31528017 and 31461143019)
文摘Genome dynamics of pathogenic organisms are driven by plant host and pathogenic organism co-evolution, in which patho- gen genomes areused to overcome stresses imposed by hosts with various genetic backgrounds through generation of a range of field isolates. This model also applies to the rice host and its fungal pathogen Magnaporthe oryzae. To better understand genetic variation of M. oryzae in nature, the field isolate V86010 from the Philippines was sequenced and ana- lyzed. Genome annotation found that the assembled V86010 genome was composed of 1 931 scaffolds with a combined length of 38.9 Mb. The average GC ratio is 51.3% and repetitive elements constitute 5.1% of the genome. A total of 11 857 genes including 616 effector protein genes were predicted using a combined analysis pipeline. All predicted genes and effector protein genes of isolate V86010 distribute on the eight chromosomes when aligned with the assembled genome of isolate 70-15. Effector protein genes are located disproportionately at several chromosomal ends. The Pot2 elements are abundant in V86010. Seven V86010-specific effector proteins were found to suppress programmed cell death induced by BAX in tobacco leaves using an Agrobacterium-mediated transient assay. Our results may provide useful information for further study of the molecular and genomic dynamics in the evolution of M. oryzae and rice host interactions, and for characterizing novel effectors and AVR genes in the rice blast pathogen.