This study introduces the representation of natural number sets as row vectors and pretends to offer a new perspective on the strong Goldbach conjecture. The natural numbers are restructured and expanded with the incl...This study introduces the representation of natural number sets as row vectors and pretends to offer a new perspective on the strong Goldbach conjecture. The natural numbers are restructured and expanded with the inclusion of the zero element as the source of a strong Goldbach conjecture reformulation. A prime Boolean vector is defined, pinpointing the positions of prime numbers within the odd number sequence. The natural unit primality is discussed in this context and transformed into a source of quantum-like indetermination. This approach allows for rephrasing the strong Goldbach conjecture, framed within a Boolean scalar product between the prime Boolean vector and its reverse. Throughout the discussion, other intriguing topics emerge and are thoroughly analyzed. A final description of two empirical algorithms is provided to prove the strong Goldbach conjecture.展开更多
With the help of the classical Abel’s lemma on summation by parts and algorithm of q-hypergeometric summations, we deal with the summation, which can be written as multiplication of a q-hypergeometric term and q-harm...With the help of the classical Abel’s lemma on summation by parts and algorithm of q-hypergeometric summations, we deal with the summation, which can be written as multiplication of a q-hypergeometric term and q-harmonic numbers. This enables us to construct and prove identities on q-harmonic numbers. Several examples are also given.展开更多
This paper is a review, a thesis, of some interesting results that have been obtained in various research concerning the “brane collisions in string and M-theory” (Cyclic Universe), p-adic inflation and p-adic cosmo...This paper is a review, a thesis, of some interesting results that have been obtained in various research concerning the “brane collisions in string and M-theory” (Cyclic Universe), p-adic inflation and p-adic cosmology. In Section 2, we have described some equations concerning cosmic evolution in a Cyclic Universe. In Section 3, we have described some equations concerning the cosmological perturbations in a Big Crunch/Big Bang space-time, the M-theory model of a Big Crunch/Big Bang transition and some equations concerning the solution of a braneworld Big Crunch/Big Bang Cosmology. In Section 4, we have described some equations concerning the generating ekpyrotic curvature perturbations before the Big Bang, some equations concerning the effective five-dimensional theory of the strongly coupled heterotic string as a gauged version of N=1five-dimensional supergravity with four-dimensional boundaries, and some equations concerning the colliding branes and the origin of the Hot Big Bang. In Section 5, we have described some equations regarding the “null energy condition” violation concerning the inflationary models and some equations concerning the evolution to a smooth universe in an ekpyrotic contracting phase with w>1. In Section 6, we have described some equations concerning the approximate inflationary solutions rolling away from the unstable maximum of p-adic string theory. In Section 7, we have described various equations concerning the p-adic minisuperspace model, zeta strings, zeta nonlocal scalar fields and p-adic and adelic quantum cosmology. In Section 8, we have shown various and interesting mathematical connections between some equations concerning the p-adic inflation, the p-adic quantum cosmology, the zeta strings and the brane collisions in string and M-theory. Furthermore, in each section, we have shown the mathematical connections with various sectors of Number Theory, principally the Ramanujan’s modular equations, the Aurea Ratio and the Fibonacci’s numbers.展开更多
We give some theorems of strong law of large numbers and complete convergence for sequences of φ-mixing random variables. In particular, Wittmann's strong law of large numbers and Teicher's strong law of large nnum...We give some theorems of strong law of large numbers and complete convergence for sequences of φ-mixing random variables. In particular, Wittmann's strong law of large numbers and Teicher's strong law of large nnumbers for independent random variables are generalized to the case of φ -minxing random variables.展开更多
For two integers k and d with (k, d) = 1 and k≥2d, let G^dk be the graph with vertex set {0,1,…k - 1 } in which ij is an edge if and only if d≤| i -j I|≤k - d. The circular chromatic number χc(G) of a graph...For two integers k and d with (k, d) = 1 and k≥2d, let G^dk be the graph with vertex set {0,1,…k - 1 } in which ij is an edge if and only if d≤| i -j I|≤k - d. The circular chromatic number χc(G) of a graph G is the minimum of k/d for which G admits a homomorphism to G^dk. The relationship between χc( G- v) and χc (G)is investigated. In particular, the circular chromatic number of G^dk - v for any vertex v is determined. Some graphs withx χc(G - v) =χc(G) - 1 for any vertex v and with certain properties are presented. Some lower bounds for the circular chromatic number of a graph are studied, and a necessary and sufficient condition under which the circular chromatic number of a graph attains the lower bound χ- 1 + 1/α is proved, where χ is the chromatic number of G and a is its independence number.展开更多
If Goldbach’s conjecture is true, then for each prime number p there is at least one pair of primes symmetric with respect to p and whose sum is 2p. In the multiplicative number theory, covering the positive integers...If Goldbach’s conjecture is true, then for each prime number p there is at least one pair of primes symmetric with respect to p and whose sum is 2p. In the multiplicative number theory, covering the positive integers with primes, during the prime factorization, may be viewed as being the outcome of a parallel system which functions properly if and only if Euler’s formula of the product of the reciprocals of the primes is true. An exact formula for the number of primes less than or equal to an arbitrary bound is given. This formula may be implemented using Wolfram’s computer package Mathematica.展开更多
On the basis of the studies on the high unsteady aerodynamic mechanisms of the fruit fly hovering the aerodynamic advantages and disadvantages of the fruit fly flapping motion were analyzed. A new bionic flapping moti...On the basis of the studies on the high unsteady aerodynamic mechanisms of the fruit fly hovering the aerodynamic advantages and disadvantages of the fruit fly flapping motion were analyzed. A new bionic flapping motion was proposed to weaken the disadvantages and maintain the advantages, it may be used in the designing and manufacturing of the micro air vehicles (MAV's). The translation of the new bionic flapping motion is the same as that of fruit fly flapping motion. However, the rotation of the new bionic flapping motion is different. It is not a pitching-up rotation as the fruit fly flapping motion, but a pitching-down rota- tion at the beginning and the end of a stroke. The numerical method of 3rd-order Roe scheme developed by Rogers was used to study these questions. The correctness of the numerical method and the computational program was justified by comparing the present CFD results of the fruit fly flapping motion in three modes, i.e., the advanced mode, the symmetrical mode and the delayed mode, with Dickinson's experimental results. They agreed with each other very well. Subsequently, the aerodynamic characteristics of the new bionic flapping motion in three modes were also numerically simulated, and were compared with those of the fruit fly flap- ping. The conclusions could be drawn that the high unsteady lift mechanism of the fruit fly hovering is also effectively utilized by this new bionic flapping. Compared with the fruit fly flapping, the unsteady drag of the new flapping decreases very much and the ratio of lift to drag increases greatly. And the great discrepancies among the mean lifts of three flapping modes of the fruit fly hovering are effectively smoothed in the new flapping. On the other hand, this new bionic flapping motion should be realized more easily. Finally, it must be pointed out that the above conclusions were just drawn for the hovering flapping motion. And the aerodynamic characteristics of the new bionic flapping motion in forward flight are going to be studied in the next step.展开更多
This article presents very original and relatively brief or very brief proofs about of two famous problems: 1) Are there any odd perfect numbers? and 2) “Fermat’s last theorem: A new proof of theorem and its general...This article presents very original and relatively brief or very brief proofs about of two famous problems: 1) Are there any odd perfect numbers? and 2) “Fermat’s last theorem: A new proof of theorem and its generalization”. They are achieved with elementary mathematics. This is why these proofs can be easily understood by any mathematician or anyone who knows basic mathematics. Note that, in both problems, proof by contradiction was used as a method of proof. The first of the two problems to date has not been resolved. Its proof is completely original and was not based on the work of other researchers. On the contrary, it was based on a simple observation that all natural divisors of a positive integer appear in pairs. The aim of the first work is to solve one of the unsolved, for many years, problems of the mathematics which belong to the field of number theory. I believe that if the present proof is recognized by the mathematical community, it may signal a different way of solving unsolved problems. For the second problem, it is very important the fact that it is generalized to an arbitrarily large number of variables. This generalization is essentially a new theorem in the field of the number theory. To the classical problem, two solutions are given, which are presented in the chronological order in which they were achieved. <em>Note that the second solution is very short and does not exceed one and a half pages</em>. This leads me to believe that Fermat, as a great mathematician was not lying and that he had probably solved the problem, as he stated in his historic its letter, with a correspondingly brief solution. <em>To win the bet on the question of whether Fermat was telling truth or lying, go immediately to the end of this article before the General Conclusions.</em>展开更多
In fairly good agreement with the consensus range of dark energy to matter this ratio of the critical density is suggested to be connected with the golden mean φ=0.6180339887, yielding for dark energy to matte...In fairly good agreement with the consensus range of dark energy to matter this ratio of the critical density is suggested to be connected with the golden mean φ=0.6180339887, yielding for dark energy to matter mass fractions .?Assuming the baryonic matter to be only 4.432%, the ratio of matter to baryonic matter would be , and further the ratio of dark matter to baryonic one . If one subtracts from the dark matter a contribution of antimatter with the same mass of baryonic matter, according to the antigravity theories of Villata respectively Hajdukovic, the remaining mass ratio would yield . Replacing the “Madelung” constant α of Villata’s “lattice universe” by φ, one reaches again 1 + φas the ratio of the repulsive mass contribution to the attractive one. Assuming instead of a 3D lattice a flat 2D one of rocksalt type, the numerical similarity between the Madelung constant and φ−1 could not be just coincidence. The proposed scaling of the cosmological mass fractions with the square of the most irrational universal number φmay indicate that the chaotic cosmological processes have reached a quite stable equilibrium. This may be confirmed by another, but similar representation of the mass constituents by the Archimedes’ constant π, giving for respectively for the dark components . However, the intimate connection of φ with its reciprocal may ignite the discussion whether our universe is intertwined with another universe or even part of a multiverse with the dark constituents contributed from there.展开更多
We propose a biased random number generation protocol whose randomness is based on the violation of the Clauser Home inequality. Non-maximally entangled state is used to maximize the Bell violation. Due to the rotatio...We propose a biased random number generation protocol whose randomness is based on the violation of the Clauser Home inequality. Non-maximally entangled state is used to maximize the Bell violation. Due to the rotational asymmetry of the quantum state, the ratio of Os to ls varies with the measurement bases. The experimental partners can then use their measurement outcomes to generate the biased random bit string. The bias of their bit string can be adjusted by altering their choices of measurement bases. When this protocol is implemented in a device-independent way, we show that the bias of the bit string can still be ensured under the collective attack.展开更多
Considering the effect of planet's number on the dynamic characteristics of the planetary gear system, a translationtorsion lumped-parameter model of 2K-H spur planetary gear system was established. Through the an...Considering the effect of planet's number on the dynamic characteristics of the planetary gear system, a translationtorsion lumped-parameter model of 2K-H spur planetary gear system was established. Through the analysis of numerical solution, the results show that 1) When the planet's number is more than 3, the order of the natural frequency will become the same; 2) When the planet's number increases, the natural frequencies of planet mode remain invariant, but when it comes to rotational mode and translational mode, the higher order natural frequencies increase and the lower order natural frequencies decrease; 3) The planet's number has a great impact on the higher order natural frequencies and a little impact on the lower order natural frequencies; and 4) To avoid the resonance, we can appropriately increase or decrease the number of the planet.展开更多
The important role of atherosclerosis in pathophysiology of Alzheimer's Disease has become evident.Mechanisms such as hyperlipidemia,inflammation,abdominal obesity and insulin resistance are important yet they may...The important role of atherosclerosis in pathophysiology of Alzheimer's Disease has become evident.Mechanisms such as hyperlipidemia,inflammation,abdominal obesity and insulin resistance are important yet they may not fully explain the specific involvement of the Circle of Willis in these pathologies.The Circle of Wills is a complex geometrical structure which has several areas with different curvature as well as various branching angles of vessels composing the circle.The hemodynamics in this region should take into account the Dean number which indicates the influence of curvature on the resistance to blood flow.Thus,areas with various curvature and angles may have different hemodynamics and there are certain areas in the Circle of Willis that are more likely to develop atherosclerotic changes.Therefore,this could suggest the novel pathophysiological pathway resulting from the geometric peculiarities of the Circle of Willis.One of the directions of future research is to examine whether specific areas of the Circle of Willis are more likely to develop atherosclerotic changes compared to other ones.Selective areas of the Circle of Willis affected by atherosclerotic changes could indicate the primary role of atherosclerosis promoting Alzheimer's disease although other pathophysiological mechanisms suggesting the opposite direction should be also examined in prospective studies.展开更多
The author recently published a paper which claimed that an ordinal interpretation of numbers had limited applicability for cryptography. A further examination of this subject, in particular to what extent an ordinal ...The author recently published a paper which claimed that an ordinal interpretation of numbers had limited applicability for cryptography. A further examination of this subject, in particular to what extent an ordinal interpretation is useful for recurrence sequences, is needed. Hilbert favored an interpretation of the natural numbers that placed their ordinal properties prior to their cardinal properties [1] [2]. The author examines ordinal uses of the integers in number theory in order to discuss the possibilities and limitations of this approach. The author hopes this paper will be useful in clarifying or even correcting some matters that were discussed in his paper of January of 2018. I was trained informally in philosophical realism, and while I think idealism too has a place, at this time in my life I believe that the weight of evidence and usefulness is more on the side of philosophical materialism. I hope this discussion will help supplement for my readers the material in Number in Mathematical Cryptography. I still maintain that a lack of clarity on these matters has hindered progress in cryptography;and it has taken time for me to better understand these things. I hope others who have interest and ability will assist in making these matters clearer. My intention was to work in pure mathematics, and the transition to an applied mindset was difficult for me. As a result, I feel most comfortable in a more middle-of-the road attitude, but have had to slowly move to a more precise analysis of the physical quantities involved. I hope my readers will be patient with my terminology, which is still evolving, and my discussion of things which are more indirectly related, and which are necessary for my expression. These are important things for the mathematical community to understand, and I hope smarter and more knowledgeable people will address my errors, and improve upon the things I might have correct. I am discussing sequences which are sometimes a use of both ordinal and cardinal numbers.展开更多
We generalize the Eulerian numbers ?to sets of numbers Eμ(k,l), (μ=0,1,2,···) where the Eulerian numbers appear as the special case μ=1. This can be used for the evaluation of generalizations Eμ(k,Z...We generalize the Eulerian numbers ?to sets of numbers Eμ(k,l), (μ=0,1,2,···) where the Eulerian numbers appear as the special case μ=1. This can be used for the evaluation of generalizations Eμ(k,Z) of the Geometric series G0(k;Z)=G1(0;Z) by splitting an essential part (1-Z)-(μK+1) where the numbers Eμ(k,l) are then the coefficients of the remainder polynomial. This can be extended for non-integer parameter k to the approximative evaluation of generalized Geometric series. The recurrence relations and for the Generalized Eulerian numbers E1(k,l) are derived. The Eulerian numbers are related to the Stirling numbers of second kind S(k,l) and we give proofs for the explicit relations of Eulerian to Stirling numbers of second kind in both directions. We discuss some ordering relations for differentiation and multiplication operators which play a role in our derivations and collect this in Appendices.展开更多
This paper makes a comparative analysis of testing stability of seed coat neps (SCN) number and size with Advanced Fiber Information System (AFIS) and aQura.After testing the number and size of SCN in sliver produced ...This paper makes a comparative analysis of testing stability of seed coat neps (SCN) number and size with Advanced Fiber Information System (AFIS) and aQura.After testing the number and size of SCN in sliver produced by two different experiments (twelve plans in each experiment)with AFIS and aQura,the test results are analyzed with the theory of statistical analysis and the following conclusions are drawn:(1) the testing stability of SCN number and size of aQura is better than that of AFIS;(2) to get a reliable testing stability of SCN number,more than 24 samples should be tested on aQura,while more than 130 samples on AFIS;(3) for SCN size test,more than 10 and 12 samples should be tested on aQura and AFIS,respectively;(4) the basic reason for higher testing stability of SCN number and size on aQura is that the weight of the samples is greater than that on AFIS.展开更多
The paper reviews the most consequential defects and rectification of traditional mathematics and its foundations. While this work is only the tip of the iceberg, so to speak, it gives us a totally different picture o...The paper reviews the most consequential defects and rectification of traditional mathematics and its foundations. While this work is only the tip of the iceberg, so to speak, it gives us a totally different picture of mathematics from what we have known for a long time. This journey started with two teasers posted in SciMath in 1997: 1) The equation 1 = 0.99… does not make sense. 2) The concept ?does not exist. The first statement sparked a debate that raged over a decade. Both statements generated a series of publications that continues to grow to this day. Among the new findings are: 3) There does not exist nondenumerable set. 4) There does not exist non-measurable set. 5) Cantor’s diagonal method is flawed. 6) The real numbers are discrete and countable. 7) Formal logic does not apply to mathematics. The unfinished debate between logicism, intuitionism-constructivism and formalism is resolved. The resolution is the constructivist foundations of mathematics with a summary of all the rectification undertaken in 2015, 2016 and in this paper. The extensions of the constructivist real number system include the complex vector plane and transcendental functions. Two important results in the 2015 are noted: The solution and resolution of Hilbert’s 23 problems that includes the resolution of Fermat’s last theorem and proof Goldbach’s conjecture.展开更多
In this paper along with the previous studies on analyzing the binomial coefficients, we will complete the proof of a theorem. The theorem states that for two positive integers n and k, when n ≥ k - 1, there always e...In this paper along with the previous studies on analyzing the binomial coefficients, we will complete the proof of a theorem. The theorem states that for two positive integers n and k, when n ≥ k - 1, there always exists at least a prime number p such that kn p ≤ (k +1)n. The Bertrand-Chebyshev’s theorem is a special case of this theorem when k = 1. In the field of prime number distribution, just as the prime number theorem provides the approximate number of prime numbers relative to natural numbers, while the new theory indicates that prime numbers exist in the specific intervals between natural numbers, that is, the new theorem provides the approximate positions of prime numbers among natural numbers.展开更多
Goldbach’s Conjecture (“Every even positive integer strictly larger than 4 is the sum of two primes”) has remained unproven since 1742. This paper contains the proof that every positive composite integer n strictly...Goldbach’s Conjecture (“Every even positive integer strictly larger than 4 is the sum of two primes”) has remained unproven since 1742. This paper contains the proof that every positive composite integer n strictly larger than 3, is located at the middle of the distance between two primes, which implicitly proves Goldbach’s Conjecture for 2n as well.展开更多
We study the nonlinear parabolic equations for travelling wave solutions of Burger’s equations. The purpose of the present work is to study various types of Burger’s equations describing waves and those are based on...We study the nonlinear parabolic equations for travelling wave solutions of Burger’s equations. The purpose of the present work is to study various types of Burger’s equations describing waves and those are based on nonlinear equations. We focus on to describe the analytic solution in the special pattern of travelling wave solutions using tan-cot function method. We discuss about inviscid and viscous version of Burger’s equation for fluid flow and investigate the effects of internal friction of a fluid via Reynolds number. By changing the velocity amplitude, the nature of flows with shock wave and disturbance are observed. For numerical solutions, the Crank-Nicolson scheme is introduced to establish the wave solutions.展开更多
In the history of mathematics different methods have been used to detect if a number is prime or not. In this paper a new one will be shown. It will be demonstrated that if the following equation is zero for a certain...In the history of mathematics different methods have been used to detect if a number is prime or not. In this paper a new one will be shown. It will be demonstrated that if the following equation is zero for a certain number p, this number p would be prime. And being m an integer number higher than (the lowest, the most efficient the operation). . If the result is an integer, this result will tell us how many permutations of two divisors, the input number has. As you can check, no recurrent division by odd or prime numbers is done, to check if the number is prime or has divisors. To get to this point, we will do the following. First, we will create a domain with all the composite numbers. This is easy, as you can just multiply one by one all the integers (greater or equal than 2) in that domain. So, you will get all the composite numbers (not getting any prime) in that domain. Then, we will use the Fourier transform to change from this original domain (called discrete time domain in this regards) to the frequency domain. There, we can check, using Parseval’s theorem, if a certain number is there or not. The use of Parseval’s theorem leads to the above integral. If the number p that we want to check is not in the domain, the result of the integral is zero and the number is a prime. If instead, the result is an integer, this integer will tell us how many permutations of two divisors the number p has. And, in consequence information how many factors, the number p has. So, for any number p lower than 2m?- 1, you can check if it is prime or not, just making the numerical definite integration. We will apply this integral in a computer program to check the efficiency of the operation. We will check, if no further developments are done, the numerical integration is inefficient computing-wise compared with brute-force checking. To be added, is the question regarding the level of accuracy needed (number of decimals and number of steps in the numerical integration) to have a reliable result for large numbers. This will be commented on the paper, but a separate study will be needed to have detailed conclusions. Of course, the best would be that in the future, an analytical result (or at least an approximation) for the summation or for the integration is achieved.展开更多
文摘This study introduces the representation of natural number sets as row vectors and pretends to offer a new perspective on the strong Goldbach conjecture. The natural numbers are restructured and expanded with the inclusion of the zero element as the source of a strong Goldbach conjecture reformulation. A prime Boolean vector is defined, pinpointing the positions of prime numbers within the odd number sequence. The natural unit primality is discussed in this context and transformed into a source of quantum-like indetermination. This approach allows for rephrasing the strong Goldbach conjecture, framed within a Boolean scalar product between the prime Boolean vector and its reverse. Throughout the discussion, other intriguing topics emerge and are thoroughly analyzed. A final description of two empirical algorithms is provided to prove the strong Goldbach conjecture.
文摘With the help of the classical Abel’s lemma on summation by parts and algorithm of q-hypergeometric summations, we deal with the summation, which can be written as multiplication of a q-hypergeometric term and q-harmonic numbers. This enables us to construct and prove identities on q-harmonic numbers. Several examples are also given.
文摘This paper is a review, a thesis, of some interesting results that have been obtained in various research concerning the “brane collisions in string and M-theory” (Cyclic Universe), p-adic inflation and p-adic cosmology. In Section 2, we have described some equations concerning cosmic evolution in a Cyclic Universe. In Section 3, we have described some equations concerning the cosmological perturbations in a Big Crunch/Big Bang space-time, the M-theory model of a Big Crunch/Big Bang transition and some equations concerning the solution of a braneworld Big Crunch/Big Bang Cosmology. In Section 4, we have described some equations concerning the generating ekpyrotic curvature perturbations before the Big Bang, some equations concerning the effective five-dimensional theory of the strongly coupled heterotic string as a gauged version of N=1five-dimensional supergravity with four-dimensional boundaries, and some equations concerning the colliding branes and the origin of the Hot Big Bang. In Section 5, we have described some equations regarding the “null energy condition” violation concerning the inflationary models and some equations concerning the evolution to a smooth universe in an ekpyrotic contracting phase with w>1. In Section 6, we have described some equations concerning the approximate inflationary solutions rolling away from the unstable maximum of p-adic string theory. In Section 7, we have described various equations concerning the p-adic minisuperspace model, zeta strings, zeta nonlocal scalar fields and p-adic and adelic quantum cosmology. In Section 8, we have shown various and interesting mathematical connections between some equations concerning the p-adic inflation, the p-adic quantum cosmology, the zeta strings and the brane collisions in string and M-theory. Furthermore, in each section, we have shown the mathematical connections with various sectors of Number Theory, principally the Ramanujan’s modular equations, the Aurea Ratio and the Fibonacci’s numbers.
基金Supported by the National Natural Science Foundation of China (10671149)
文摘We give some theorems of strong law of large numbers and complete convergence for sequences of φ-mixing random variables. In particular, Wittmann's strong law of large numbers and Teicher's strong law of large nnumbers for independent random variables are generalized to the case of φ -minxing random variables.
基金The National Natural Science Foundation of China(No.10671033)
文摘For two integers k and d with (k, d) = 1 and k≥2d, let G^dk be the graph with vertex set {0,1,…k - 1 } in which ij is an edge if and only if d≤| i -j I|≤k - d. The circular chromatic number χc(G) of a graph G is the minimum of k/d for which G admits a homomorphism to G^dk. The relationship between χc( G- v) and χc (G)is investigated. In particular, the circular chromatic number of G^dk - v for any vertex v is determined. Some graphs withx χc(G - v) =χc(G) - 1 for any vertex v and with certain properties are presented. Some lower bounds for the circular chromatic number of a graph are studied, and a necessary and sufficient condition under which the circular chromatic number of a graph attains the lower bound χ- 1 + 1/α is proved, where χ is the chromatic number of G and a is its independence number.
文摘If Goldbach’s conjecture is true, then for each prime number p there is at least one pair of primes symmetric with respect to p and whose sum is 2p. In the multiplicative number theory, covering the positive integers with primes, during the prime factorization, may be viewed as being the outcome of a parallel system which functions properly if and only if Euler’s formula of the product of the reciprocals of the primes is true. An exact formula for the number of primes less than or equal to an arbitrary bound is given. This formula may be implemented using Wolfram’s computer package Mathematica.
基金The project supported by the National Natural Science Foundation of China10232010The project supported by the National Natural Science Foundation of China10032060The project supported by the National Natural Science Foundation of China90605005
文摘On the basis of the studies on the high unsteady aerodynamic mechanisms of the fruit fly hovering the aerodynamic advantages and disadvantages of the fruit fly flapping motion were analyzed. A new bionic flapping motion was proposed to weaken the disadvantages and maintain the advantages, it may be used in the designing and manufacturing of the micro air vehicles (MAV's). The translation of the new bionic flapping motion is the same as that of fruit fly flapping motion. However, the rotation of the new bionic flapping motion is different. It is not a pitching-up rotation as the fruit fly flapping motion, but a pitching-down rota- tion at the beginning and the end of a stroke. The numerical method of 3rd-order Roe scheme developed by Rogers was used to study these questions. The correctness of the numerical method and the computational program was justified by comparing the present CFD results of the fruit fly flapping motion in three modes, i.e., the advanced mode, the symmetrical mode and the delayed mode, with Dickinson's experimental results. They agreed with each other very well. Subsequently, the aerodynamic characteristics of the new bionic flapping motion in three modes were also numerically simulated, and were compared with those of the fruit fly flap- ping. The conclusions could be drawn that the high unsteady lift mechanism of the fruit fly hovering is also effectively utilized by this new bionic flapping. Compared with the fruit fly flapping, the unsteady drag of the new flapping decreases very much and the ratio of lift to drag increases greatly. And the great discrepancies among the mean lifts of three flapping modes of the fruit fly hovering are effectively smoothed in the new flapping. On the other hand, this new bionic flapping motion should be realized more easily. Finally, it must be pointed out that the above conclusions were just drawn for the hovering flapping motion. And the aerodynamic characteristics of the new bionic flapping motion in forward flight are going to be studied in the next step.
文摘This article presents very original and relatively brief or very brief proofs about of two famous problems: 1) Are there any odd perfect numbers? and 2) “Fermat’s last theorem: A new proof of theorem and its generalization”. They are achieved with elementary mathematics. This is why these proofs can be easily understood by any mathematician or anyone who knows basic mathematics. Note that, in both problems, proof by contradiction was used as a method of proof. The first of the two problems to date has not been resolved. Its proof is completely original and was not based on the work of other researchers. On the contrary, it was based on a simple observation that all natural divisors of a positive integer appear in pairs. The aim of the first work is to solve one of the unsolved, for many years, problems of the mathematics which belong to the field of number theory. I believe that if the present proof is recognized by the mathematical community, it may signal a different way of solving unsolved problems. For the second problem, it is very important the fact that it is generalized to an arbitrarily large number of variables. This generalization is essentially a new theorem in the field of the number theory. To the classical problem, two solutions are given, which are presented in the chronological order in which they were achieved. <em>Note that the second solution is very short and does not exceed one and a half pages</em>. This leads me to believe that Fermat, as a great mathematician was not lying and that he had probably solved the problem, as he stated in his historic its letter, with a correspondingly brief solution. <em>To win the bet on the question of whether Fermat was telling truth or lying, go immediately to the end of this article before the General Conclusions.</em>
文摘In fairly good agreement with the consensus range of dark energy to matter this ratio of the critical density is suggested to be connected with the golden mean φ=0.6180339887, yielding for dark energy to matter mass fractions .?Assuming the baryonic matter to be only 4.432%, the ratio of matter to baryonic matter would be , and further the ratio of dark matter to baryonic one . If one subtracts from the dark matter a contribution of antimatter with the same mass of baryonic matter, according to the antigravity theories of Villata respectively Hajdukovic, the remaining mass ratio would yield . Replacing the “Madelung” constant α of Villata’s “lattice universe” by φ, one reaches again 1 + φas the ratio of the repulsive mass contribution to the attractive one. Assuming instead of a 3D lattice a flat 2D one of rocksalt type, the numerical similarity between the Madelung constant and φ−1 could not be just coincidence. The proposed scaling of the cosmological mass fractions with the square of the most irrational universal number φmay indicate that the chaotic cosmological processes have reached a quite stable equilibrium. This may be confirmed by another, but similar representation of the mass constituents by the Archimedes’ constant π, giving for respectively for the dark components . However, the intimate connection of φ with its reciprocal may ignite the discussion whether our universe is intertwined with another universe or even part of a multiverse with the dark constituents contributed from there.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61378011,U1204616 and 11447143the Program for Science and Technology Innovation Talents in Universities of Henan Province under Grant No 2012HASTIT028the Program for Science and Technology Innovation Research Team in University of Henan Province under Grant No 13IRTSTHN020
文摘We propose a biased random number generation protocol whose randomness is based on the violation of the Clauser Home inequality. Non-maximally entangled state is used to maximize the Bell violation. Due to the rotational asymmetry of the quantum state, the ratio of Os to ls varies with the measurement bases. The experimental partners can then use their measurement outcomes to generate the biased random bit string. The bias of their bit string can be adjusted by altering their choices of measurement bases. When this protocol is implemented in a device-independent way, we show that the bias of the bit string can still be ensured under the collective attack.
基金Funded by the Key Research and Development Project in Henan Province(No.142102210067)
文摘Considering the effect of planet's number on the dynamic characteristics of the planetary gear system, a translationtorsion lumped-parameter model of 2K-H spur planetary gear system was established. Through the analysis of numerical solution, the results show that 1) When the planet's number is more than 3, the order of the natural frequency will become the same; 2) When the planet's number increases, the natural frequencies of planet mode remain invariant, but when it comes to rotational mode and translational mode, the higher order natural frequencies increase and the lower order natural frequencies decrease; 3) The planet's number has a great impact on the higher order natural frequencies and a little impact on the lower order natural frequencies; and 4) To avoid the resonance, we can appropriately increase or decrease the number of the planet.
文摘The important role of atherosclerosis in pathophysiology of Alzheimer's Disease has become evident.Mechanisms such as hyperlipidemia,inflammation,abdominal obesity and insulin resistance are important yet they may not fully explain the specific involvement of the Circle of Willis in these pathologies.The Circle of Wills is a complex geometrical structure which has several areas with different curvature as well as various branching angles of vessels composing the circle.The hemodynamics in this region should take into account the Dean number which indicates the influence of curvature on the resistance to blood flow.Thus,areas with various curvature and angles may have different hemodynamics and there are certain areas in the Circle of Willis that are more likely to develop atherosclerotic changes.Therefore,this could suggest the novel pathophysiological pathway resulting from the geometric peculiarities of the Circle of Willis.One of the directions of future research is to examine whether specific areas of the Circle of Willis are more likely to develop atherosclerotic changes compared to other ones.Selective areas of the Circle of Willis affected by atherosclerotic changes could indicate the primary role of atherosclerosis promoting Alzheimer's disease although other pathophysiological mechanisms suggesting the opposite direction should be also examined in prospective studies.
文摘The author recently published a paper which claimed that an ordinal interpretation of numbers had limited applicability for cryptography. A further examination of this subject, in particular to what extent an ordinal interpretation is useful for recurrence sequences, is needed. Hilbert favored an interpretation of the natural numbers that placed their ordinal properties prior to their cardinal properties [1] [2]. The author examines ordinal uses of the integers in number theory in order to discuss the possibilities and limitations of this approach. The author hopes this paper will be useful in clarifying or even correcting some matters that were discussed in his paper of January of 2018. I was trained informally in philosophical realism, and while I think idealism too has a place, at this time in my life I believe that the weight of evidence and usefulness is more on the side of philosophical materialism. I hope this discussion will help supplement for my readers the material in Number in Mathematical Cryptography. I still maintain that a lack of clarity on these matters has hindered progress in cryptography;and it has taken time for me to better understand these things. I hope others who have interest and ability will assist in making these matters clearer. My intention was to work in pure mathematics, and the transition to an applied mindset was difficult for me. As a result, I feel most comfortable in a more middle-of-the road attitude, but have had to slowly move to a more precise analysis of the physical quantities involved. I hope my readers will be patient with my terminology, which is still evolving, and my discussion of things which are more indirectly related, and which are necessary for my expression. These are important things for the mathematical community to understand, and I hope smarter and more knowledgeable people will address my errors, and improve upon the things I might have correct. I am discussing sequences which are sometimes a use of both ordinal and cardinal numbers.
文摘We generalize the Eulerian numbers ?to sets of numbers Eμ(k,l), (μ=0,1,2,···) where the Eulerian numbers appear as the special case μ=1. This can be used for the evaluation of generalizations Eμ(k,Z) of the Geometric series G0(k;Z)=G1(0;Z) by splitting an essential part (1-Z)-(μK+1) where the numbers Eμ(k,l) are then the coefficients of the remainder polynomial. This can be extended for non-integer parameter k to the approximative evaluation of generalized Geometric series. The recurrence relations and for the Generalized Eulerian numbers E1(k,l) are derived. The Eulerian numbers are related to the Stirling numbers of second kind S(k,l) and we give proofs for the explicit relations of Eulerian to Stirling numbers of second kind in both directions. We discuss some ordering relations for differentiation and multiplication operators which play a role in our derivations and collect this in Appendices.
基金Fund of Scientific and Technological Key Project Plan of Liaoning Province,China(No.2003220026) Fund of Scientific and Technological Key Project Plan of Dandong City,China(No.06133)
文摘This paper makes a comparative analysis of testing stability of seed coat neps (SCN) number and size with Advanced Fiber Information System (AFIS) and aQura.After testing the number and size of SCN in sliver produced by two different experiments (twelve plans in each experiment)with AFIS and aQura,the test results are analyzed with the theory of statistical analysis and the following conclusions are drawn:(1) the testing stability of SCN number and size of aQura is better than that of AFIS;(2) to get a reliable testing stability of SCN number,more than 24 samples should be tested on aQura,while more than 130 samples on AFIS;(3) for SCN size test,more than 10 and 12 samples should be tested on aQura and AFIS,respectively;(4) the basic reason for higher testing stability of SCN number and size on aQura is that the weight of the samples is greater than that on AFIS.
文摘The paper reviews the most consequential defects and rectification of traditional mathematics and its foundations. While this work is only the tip of the iceberg, so to speak, it gives us a totally different picture of mathematics from what we have known for a long time. This journey started with two teasers posted in SciMath in 1997: 1) The equation 1 = 0.99… does not make sense. 2) The concept ?does not exist. The first statement sparked a debate that raged over a decade. Both statements generated a series of publications that continues to grow to this day. Among the new findings are: 3) There does not exist nondenumerable set. 4) There does not exist non-measurable set. 5) Cantor’s diagonal method is flawed. 6) The real numbers are discrete and countable. 7) Formal logic does not apply to mathematics. The unfinished debate between logicism, intuitionism-constructivism and formalism is resolved. The resolution is the constructivist foundations of mathematics with a summary of all the rectification undertaken in 2015, 2016 and in this paper. The extensions of the constructivist real number system include the complex vector plane and transcendental functions. Two important results in the 2015 are noted: The solution and resolution of Hilbert’s 23 problems that includes the resolution of Fermat’s last theorem and proof Goldbach’s conjecture.
文摘In this paper along with the previous studies on analyzing the binomial coefficients, we will complete the proof of a theorem. The theorem states that for two positive integers n and k, when n ≥ k - 1, there always exists at least a prime number p such that kn p ≤ (k +1)n. The Bertrand-Chebyshev’s theorem is a special case of this theorem when k = 1. In the field of prime number distribution, just as the prime number theorem provides the approximate number of prime numbers relative to natural numbers, while the new theory indicates that prime numbers exist in the specific intervals between natural numbers, that is, the new theorem provides the approximate positions of prime numbers among natural numbers.
文摘Goldbach’s Conjecture (“Every even positive integer strictly larger than 4 is the sum of two primes”) has remained unproven since 1742. This paper contains the proof that every positive composite integer n strictly larger than 3, is located at the middle of the distance between two primes, which implicitly proves Goldbach’s Conjecture for 2n as well.
文摘We study the nonlinear parabolic equations for travelling wave solutions of Burger’s equations. The purpose of the present work is to study various types of Burger’s equations describing waves and those are based on nonlinear equations. We focus on to describe the analytic solution in the special pattern of travelling wave solutions using tan-cot function method. We discuss about inviscid and viscous version of Burger’s equation for fluid flow and investigate the effects of internal friction of a fluid via Reynolds number. By changing the velocity amplitude, the nature of flows with shock wave and disturbance are observed. For numerical solutions, the Crank-Nicolson scheme is introduced to establish the wave solutions.
文摘In the history of mathematics different methods have been used to detect if a number is prime or not. In this paper a new one will be shown. It will be demonstrated that if the following equation is zero for a certain number p, this number p would be prime. And being m an integer number higher than (the lowest, the most efficient the operation). . If the result is an integer, this result will tell us how many permutations of two divisors, the input number has. As you can check, no recurrent division by odd or prime numbers is done, to check if the number is prime or has divisors. To get to this point, we will do the following. First, we will create a domain with all the composite numbers. This is easy, as you can just multiply one by one all the integers (greater or equal than 2) in that domain. So, you will get all the composite numbers (not getting any prime) in that domain. Then, we will use the Fourier transform to change from this original domain (called discrete time domain in this regards) to the frequency domain. There, we can check, using Parseval’s theorem, if a certain number is there or not. The use of Parseval’s theorem leads to the above integral. If the number p that we want to check is not in the domain, the result of the integral is zero and the number is a prime. If instead, the result is an integer, this integer will tell us how many permutations of two divisors the number p has. And, in consequence information how many factors, the number p has. So, for any number p lower than 2m?- 1, you can check if it is prime or not, just making the numerical definite integration. We will apply this integral in a computer program to check the efficiency of the operation. We will check, if no further developments are done, the numerical integration is inefficient computing-wise compared with brute-force checking. To be added, is the question regarding the level of accuracy needed (number of decimals and number of steps in the numerical integration) to have a reliable result for large numbers. This will be commented on the paper, but a separate study will be needed to have detailed conclusions. Of course, the best would be that in the future, an analytical result (or at least an approximation) for the summation or for the integration is achieved.