Automotive collision avoidance technology can effectively avoid the accidents caused by dangerous traffic conditions or driver's manipulation errors.Moreover,it can promote the development of autonomous driving fo...Automotive collision avoidance technology can effectively avoid the accidents caused by dangerous traffic conditions or driver's manipulation errors.Moreover,it can promote the development of autonomous driving for intelligent vehicle in intelligent transportation.We present a collision avoidance system,which is composed of an evasive trajectory planner and a path following controller.Considering the stability of the vehicle in the conflict-free process,the evasive trajectory planner is designed by polynomial parametric method and optimized by genetic algorithm.The path following controller is proposed to make the car drive along the designed path by controlling the vehicle's lateral movement.Simulation results show that the vehicle with the proposed controller has good stability in the collision process,and it can ensure the vehicle driving in accordance with the planned trajectory at different speeds.The research results can provide a certain basis for the research and development of automotive collision avoidance technology.展开更多
This paper presents an optimisatiombased verification process for obstacle avoidance systems of a unicycle-like mobile robot. It is a novel approach for the collision avoidance verification process. Local and global o...This paper presents an optimisatiombased verification process for obstacle avoidance systems of a unicycle-like mobile robot. It is a novel approach for the collision avoidance verification process. Local and global optimisation based verification processes are developed to find the worst-case parameters and the worst-case distance between the robot and an obstacle. The kinematic and dynamic model of the unicycle-like mobile robot is first introduced with force and torque as the inputs. The design of the control system is split into two parts. One is velocity and rotation using the robot dynamics, and the other is the incremental motion planning for robot kinematics. The artificial potential field method is chosen as a path planning and obstacle avoidance candidate technique for verification study as it is simple and widely used. Different optimisation algorithms are applied and compared for the purpose of verification. It is shown that even for a simple case study where only mass and inertia variations are considered, a local optimization based verification method may fail to identify the worst case. Two global optimisation methods have been investigated: genetic algorithms (GAs) and GLOBAL algorithms. Both of these methods successfully find the worst case. The verification process confirms that the obstacle avoidance algorithm functions correctly in the presence of all the possible parameter variations.展开更多
The braking behavior of drivers when a pedestrian comes out from the sidewalk to the road was analyzed using a driving simulator. Based on drivers' braking behavior, the braking control timing of the system for avoid...The braking behavior of drivers when a pedestrian comes out from the sidewalk to the road was analyzed using a driving simulator. Based on drivers' braking behavior, the braking control timing of the system for avoiding the collision with pedestrians was proposed. In this study, the subject drivers started braking at almost the same time in terms of TTC (Time to Collision), regardless of the velocity of a subject vehicle and crossing velocity of pedestrians. This experimental result showed that brake timing of the system which can minimize the interference for braking between drivers and the system is 1.3 s of TTC. Next, the drivers' braking behavior was investigated when the system controlled braking to avoid collision at this timing. As a result, drivers did not show any change of braking behavior with no excessive interference between braking control by the system and braking operation by drivers for avoiding collisions with pedestrians which is equivalent to the excessive dependence on the system.展开更多
Vehicle collision avoidance system is a kind of auxiliary driving system based on vehicle active safety,which can assist the driver to take the initiative to avoid obstacles under certain conditions,so as to effective...Vehicle collision avoidance system is a kind of auxiliary driving system based on vehicle active safety,which can assist the driver to take the initiative to avoid obstacles under certain conditions,so as to effectively improve the driving safety of vehicle.This paper presents a collision avoidance system for an autonomous vehicle based on an active front steering,which mainly consists of a path planner and a robust tracking controller.A path planner is designed based on polynomial parameterization optimized by simulated annealing algorithm,which plans an evasive trajectory to bypass the obstacle and avoid crashes.The dynamic models of the AFS system,vehicle as well as the driver model are established,and based on these,a robust tracking controller is proposed,which controls the system to resist external disturbances and work in accordance with the planning trajectory.The proposed collision avoidance system is testified through CarSim and Simulink combined simulation platform.The simulation results show that it can effectively track the planning trajectory,and improve the steering stability and anti-interference performance of the vehicle.展开更多
The introduction ofproportional-integral-dorivative (PID) controllers into cooperative collision avoidance systems (CCASs) has been hindered by difficulties in their optimization and by a lack of study of their ef...The introduction ofproportional-integral-dorivative (PID) controllers into cooperative collision avoidance systems (CCASs) has been hindered by difficulties in their optimization and by a lack of study of their effects on vehicle driving stability, comfort, and fuel economy. In this paper, we propose a method to optimize PID controllers using an improved particle swarm optimization (PSO) algorithm, and to bettor manipulate cooperative collision avoidance with other vehicles. First, we use PRESCAN and MATLAB/Simulink to conduct a united simulation, which constructs a CCAS composed of a PID controller, maneuver strategy judging modules, and a path planning module. Then we apply the improved PSO algorithm to optimize the PID controller based on the dynamic vehicle data obtained. Finally, we perform a simulation test of performance before and after the optimization of the PID controller, in which vehicles equipped with a CCAS undertake deceleration driving and steering under the two states of low speed (≤50 km/h) and high speed (≥100 km/h) cruising. The results show that the PID controller optimized using the proposed method can achieve not only the basic functions of a CCAS, but also improvements in vehicle dynamic stability, riding comfort, and fuel economy.展开更多
Formation control and obstacle avoidance for multi-agent systems have attracted more and more attention. In this paper, the problems of formation control and obstacle avoidance are investigated by means of a consensus...Formation control and obstacle avoidance for multi-agent systems have attracted more and more attention. In this paper, the problems of formation control and obstacle avoidance are investigated by means of a consensus algorithm. A novel distributed control model is proposed for the multi-agent system to form the anticipated formation as well as achieve obstacle avoidance. Based on the consensus algorithm, a distributed control function consisting of three terms (formation control term, velocity matching term, and obstacle avoidance term) is presented. By establishing a novel formation control matrix, a formation control term is constructed such that the agents can converge to consensus and reach the anticipated formation. A new obstacle avoidance function is developed by using the modified potential field approach to make sure that obstacle avoidance can be achieved whether the obstacle is in a dynamic state or a stationary state. A velocity matching term is also put forward to guarantee that the velocities of all agents converge to the same value. Furthermore, stability of the control model is proven. Simulation results are provided to demonstrate the effectiveness of the proposed control.展开更多
Deadlock avoidance problems are investigated for automated manufacturing systems with flexible routings. Based on the Petri net models of the systems, this paper proposes, for the first time, the concept of perfect ma...Deadlock avoidance problems are investigated for automated manufacturing systems with flexible routings. Based on the Petri net models of the systems, this paper proposes, for the first time, the concept of perfect maximal resourcetransition circuits and their saturated states. The concept facilitates the development of system liveness characterization and deadlock avoidance Petri net supervisors. Deadlock is characterized as some perfect maximal resource-transition circuits reaching their saturated states. For a large class of manufacturing systems, which do not contain center resources, the optimal deadlock avoidance Petri net supervisors are presented. For a general manufacturing system, a method is proposed for reducing the system Petri net model so that the reduced model does not contain center resources and, hence, has optimal deadlock avoidance Petri net supervisor. The controlled reduced Petri net model can then be used as the liveness supervisor of the system.展开更多
In active collision avoidance,the trajectory tracking controller determines the deviation from the reference path and the vehicle stability.The main objective of this study was to reduce the tracking error and improve...In active collision avoidance,the trajectory tracking controller determines the deviation from the reference path and the vehicle stability.The main objective of this study was to reduce the tracking error and improve the tracking performance in collision avoidance.Unlike the previously proposed model predictive control(MPC)strategies with constant sampling time,an improved MPC controller with varying sampling time based on the hierarchical control framework was proposed in this paper.Compared with the original MPC tracking controller,the improved MPC controller demonstrated better adaptive capability for the varying road adhesion coefficients and vehicle speed on a curved road.The simulation results revealed that the hierarchical control framework generated an optimal trajectory for collision avoidance in real-time by minimizing the potential field energy.展开更多
For real-time and distributed features of multi-robot system,the strategy of combining the improved artificial potential field method and the rules based on priority is proposed to study the collision avoidance planni...For real-time and distributed features of multi-robot system,the strategy of combining the improved artificial potential field method and the rules based on priority is proposed to study the collision avoidance planning in multi-robot systems. The improved artificial potential field based on simulated annealing algorithm satisfactorily overcomes the drawbacks of traditional artificial potential field method,so that robots can find a local collision-free path in the complex environment. According to the movement vector trail of robots,collisions between robots can be detected,thereby the collision avoidance rules can be obtained. Coordination between robots by the priority based rules improves the real-time property of multi-robot system. The combination of these two methods can help a robot to find a collision-free path from a starting point to the goal quickly in an environment with many obstacles. The feasibility of the proposed method is validated in the VC-based simulated environment.展开更多
This paper considers the problems of target tracking and obstacle avoidance for multi-agent systems. To solve the problem that multiple agents cannot effectively track the target while avoiding obstacle in dynamic env...This paper considers the problems of target tracking and obstacle avoidance for multi-agent systems. To solve the problem that multiple agents cannot effectively track the target while avoiding obstacle in dynamic environment, a novel control algorithm based on potential function and behavior rules is proposed. Meanwhile, the interactions among agents are also considered. According to the state whether an agent is within the area of its neighbors' influence, two kinds of potential functions are presented. Meanwhile, the distributed control input of each agent is determined by relative velocities as well as relative positions among agents, target and obstacle. The maximum linear speed of the agents is also discussed. Finally, simulation studies are given to demonstrate the performance of the proposed algorithm.展开更多
In this paper, the fixed-time event-triggered obstacle avoidance consensus control for a multi-AUV time-varying formation system in a 3D environment is presented by using an improved artificial potential field and lea...In this paper, the fixed-time event-triggered obstacle avoidance consensus control for a multi-AUV time-varying formation system in a 3D environment is presented by using an improved artificial potential field and leader-follower strategy(IAPF-LF). Firstly, the proposed fixed-time control can achieve the desired multi-AUV formation within a fixed settling time in any initial system state. Secondly, an event-triggered communication strategy is developed to govern the communication among AUVs, and the communication energy consumption can be decremented. The time-varying formation obstacle avoidance control algorithm based on IAPF-LF is designed to avoid static and dynamic obstacles, the desired formation is maintained in the presence of external disturbances, and there is no Zeno behavior under the fixed-time event-triggered consensus control strategy.The stability of the system is proved by the Lyapunov function and inequality scaling. Finally, simulation examples and water pool experiments are reported to verify the performance of the proposed theoretical algorithms.展开更多
In recent years,multiple-load automatic guided vehicle(AGV)is increasingly used in the logistics transportation fields,owing to the advantages of smaller fleet size and fewer occurrences of traffic congestion.However,...In recent years,multiple-load automatic guided vehicle(AGV)is increasingly used in the logistics transportation fields,owing to the advantages of smaller fleet size and fewer occurrences of traffic congestion.However,one main challenge lies in the deadlock-avoidance for the dispatching process of a multiple-load AGV system.To prevent the system from falling into a deadlock,a strategy of keeping the number of jobs in the system(NJIS)at a low level is adopted in most existing literatures.It is noteworthy that a low-level NJIS will make the processing machine easier to be starved,thereby reducing the system efficiency unavoidably.The motivation of the paper is to develop a deadlock-avoidance dispatching method for a multiple-load AGV system operating at a high NJIS level.Firstly,the deadlock-avoidance dispatching method is devised by incorporating a deadlock-avoidance strategy into a dispatching procedure that contains four sub-problems.In this strategy,critical tasks are recognized according to the status of workstation buffers,and then temporarily forbidden to avoid potential deadlocks.Secondly,three multiattribute dispatching rules are designed for system efficiency,where both the traveling distance and the buffer status are taken into account.Finally,a simulation system is developed to evaluate the performance of the proposed deadlock-avoidance strategy and dispatching rules at different NJIS levels.The experimental results demonstrate that our deadlock-avoidance dispatching method can improve the system efficiency at a high NJIS level and the adaptability to various system settings,while still avoiding potential deadlocks.展开更多
This paper presents a segmented trajectory planning strategy for active collision avoidance system.Considering the longitudinal and lateral movement of the obstacle vehicle,as well as the ego vehicle and obstacle oute...This paper presents a segmented trajectory planning strategy for active collision avoidance system.Considering the longitudinal and lateral movement of the obstacle vehicle,as well as the ego vehicle and obstacle outer contour limitations,the collision avoidance trajectory is divided into three segments:lane changing,overtaking and back to original lane.The starting point and end point of lane-change are decided based on longitudinal and lateral safety distance model according to the relative speed and distance as well as the outer contour of the two vehicles.Based on system objective function and lane-change trajectory cluster,vehicle states,dynamic constraints and vehicle body kinematics constraints,the optimal trajectory can be selected,which can monitor the relative location of the obstacle vehicle constantly and then ensure the vehicle can accomplish the collision avoidance safely and smoothly.Simulation and experiment results demonstrate the effectiveness and feasibility of proposed trajectory planning strategy for the active collision avoidance.展开更多
This paper investigates the path-following control problem with obstacle avoidance of autonomous surface vehicles in the presence of actuator faults,uncertainty and external disturbances.Autonomous surface vehicles in...This paper investigates the path-following control problem with obstacle avoidance of autonomous surface vehicles in the presence of actuator faults,uncertainty and external disturbances.Autonomous surface vehicles inevitably suffer from actuator faults in complex sea environments,which may cause existing obstacle avoidance strategies to fail.To reduce the influence of actuator faults,an improved artificial potential function is constructed by introducing the lower bound of actuator efficiency factors.The nonlinear state observer,which only depends on measurable position information of the autonomous surface vehicle,is used to address uncertainties and external disturbances.By using a backstepping technique and adaptive mechanism,a path-following control strategy with obstacle avoidance and fault tolerance is designed which can ensure that the tracking errors converge to a small neighborhood of zero.Compared with existing results,the proposed control strategy has the capability of obstacle avoidance and fault tolerance simultaneously.Finally,the comparison results through simulations are given to verify the effectiveness of the proposed method.展开更多
With the improvement of automobile ownership in recent years,the incidence of traffic accidents constantly increases and requirements on the security of automobiles become increasingly higher.As science and technology...With the improvement of automobile ownership in recent years,the incidence of traffic accidents constantly increases and requirements on the security of automobiles become increasingly higher.As science and technology develops constantly,the development of automobile automatic obstacle avoidance and cruise system accelerates gradually,and the requirement on distance control becomes stricter.Automobile automatic obstacle avoidance and cruise system can determine the conditions of automobiles and roads using sensing technology,automatically adopt measures to control automobile after discovering road safety hazards,thus to reduce the incidence of traffic accidents.To prevent accidental collision of automobile which are installed with automatic obstacle avoidance and cruise system,active brake should be controlled during driving.This study put forward a neural network based proportional-integral-derivative(PID)control algorithm.The active brake of automobiles was effectively controlled using the system to keep the distance between automobiles.Moreover the algorithm was tested using professional automobile simulation platform.The results demonstrated that neural network based PID control algorithm can precisely and efficiently control the distance between two cars.This work provides a reference for the development of automobile automatic obstacle avoidance and cruise system.展开更多
The basic composition and working principle of wireless collision avoidance and early warning system based on spread spectrum ranging which is used in urban mass transit is introduced in this paper. Some performance i...The basic composition and working principle of wireless collision avoidance and early warning system based on spread spectrum ranging which is used in urban mass transit is introduced in this paper. Some performance indicators such as maximum measured distance and range errors are theoretically analyzed and numerically calculated. According to the characteristics of the urban mass transit, the applicability of the system is evaluated.展开更多
The forward design of trajectory planning strategies requires preset trajectory optimization functions,resulting in poor adaptability of the strategy and an inability to accurately generate obstacle avoidance trajecto...The forward design of trajectory planning strategies requires preset trajectory optimization functions,resulting in poor adaptability of the strategy and an inability to accurately generate obstacle avoidance trajectories that conform to real driver behavior habits.In addition,owing to the strong time-varying dynamic characteristics of obstacle avoidance scenarios,it is necessary to design numerous trajectory optimization functions and adjust the corresponding parameters.Therefore,an anthropomorphic obstacle-avoidance trajectory planning strategy for adaptive driving scenarios is proposed.First,numerous expert-demonstrated trajectories are extracted from the HighD natural driving dataset.Subsequently,a trajectory expectation feature-matching algorithm is proposed that uses maximum entropy inverse reinforcement learning theory to learn the extracted expert-demonstrated trajectories and achieve automatic acquisition of the optimization function of the expert-demonstrated trajectory.Furthermore,a mapping model is constructed by combining the key driving scenario information that affects vehicle obstacle avoidance with the weight of the optimization function,and an anthropomorphic obstacle avoidance trajectory planning strategy for adaptive driving scenarios is proposed.Finally,the proposed strategy is verified based on real driving scenarios.The results show that the strategy can adjust the weight distribution of the trajectory optimization function in real time according to the“emergency degree”of obstacle avoidance and the state of the vehicle.Moreover,this strategy can generate anthropomorphic trajectories that are similar to expert-demonstrated trajectories,effectively improving the adaptability and acceptability of trajectories in driving scenarios.展开更多
In view of the complex marine environment of navigation,especially in the case of multiple static and dynamic obstacles,the traditional obstacle avoidance algorithms applied to unmanned surface vehicles(USV)are prone ...In view of the complex marine environment of navigation,especially in the case of multiple static and dynamic obstacles,the traditional obstacle avoidance algorithms applied to unmanned surface vehicles(USV)are prone to fall into the trap of local optimization.Therefore,this paper proposes an improved artificial potential field(APF)algorithm,which uses 5G communication technology to communicate between the USV and the control center.The algorithm introduces the USV discrimination mechanism to avoid the USV falling into local optimization when the USV encounter different obstacles in different scenarios.Considering the various scenarios between the USV and other dynamic obstacles such as vessels in the process of performing tasks,the algorithm introduces the concept of dynamic artificial potential field.For the multiple obstacles encountered in the process of USV sailing,based on the International Regulations for Preventing Collisions at Sea(COLREGS),the USV determines whether the next step will fall into local optimization through the discriminationmechanism.The local potential field of the USV will dynamically adjust,and the reverse virtual gravitational potential field will be added to prevent it from falling into the local optimization and avoid collisions.The objective function and cost function are designed at the same time,so that the USV can smoothly switch between the global path and the local obstacle avoidance.The simulation results show that the improved APF algorithm proposed in this paper can successfully avoid various obstacles in the complex marine environment,and take navigation time and economic cost into account.展开更多
We investigate the Floquet spectrum and excitation properties of a two-ultracold-atom system with periodically driven interaction in a three-dimensional harmonic trap.The interaction between the atoms is changed by va...We investigate the Floquet spectrum and excitation properties of a two-ultracold-atom system with periodically driven interaction in a three-dimensional harmonic trap.The interaction between the atoms is changed by varying the s-wave scattering length in two ways,the cosine and the square-wave modulations.It is found that as the driving frequency increases,the Floquet spectrum exhibits two main features for both modulations,the accumulating and the spreading of the quasienergy levels,which further lead to different dynamical behaviors.The accumulation is associated with collective excitations and the persistent growth of the energy,while the spread indicates that the energy is bounded at all times.The initial scattering length,the driving frequency and amplitude can all significantly change the Floquet spectrum as well as the dynamics.However,the corresponding relation between them is valid universally.Finally,we propose a mechanism for selectively exciting the system to one specific state by using the avoided crossing of two quasienergy levels,which could guide preparation of a desired state in experiments.展开更多
Road intersections are important nodes for the convergence,turning,and diversion of traffic flows in the urban road network,but at the same time,due to the large traffic volume and conflict points at the intersection,...Road intersections are important nodes for the convergence,turning,and diversion of traffic flows in the urban road network,but at the same time,due to the large traffic volume and conflict points at the intersection,it has become a traffic congestion and accident-prone area,which seriously affects road traffic safety and vehicle traffic efficiency.Therefore,it is of great significance to study the collaborative control strategy of urban intersections.This paper analyzes and summarizes the methods of intersection cooperative control based on intelligent connected vehicles in recent years,and looks forward to the future development trend and prospects of the combination of intersection cooperative control and Vehicle-Infrastructure Cooperation System.展开更多
基金supported by the National Key Research and Development Plan of China (No.2016YFB0101102 )the Suzhou Tsinghua Innovation Initiative(No. 2016SZ0207)+2 种基金the National Natural Science Foundation of China(No.51375007)the Research Project of Key Laboratory of Advanced Manufacture Technology for Automobile Parts(Chongqing University of Technology),Ministry of Education (No.2015KLMT04)the Fundamental Research Funds for the Central Universities (No. NE2016002)
文摘Automotive collision avoidance technology can effectively avoid the accidents caused by dangerous traffic conditions or driver's manipulation errors.Moreover,it can promote the development of autonomous driving for intelligent vehicle in intelligent transportation.We present a collision avoidance system,which is composed of an evasive trajectory planner and a path following controller.Considering the stability of the vehicle in the conflict-free process,the evasive trajectory planner is designed by polynomial parametric method and optimized by genetic algorithm.The path following controller is proposed to make the car drive along the designed path by controlling the vehicle's lateral movement.Simulation results show that the vehicle with the proposed controller has good stability in the collision process,and it can ensure the vehicle driving in accordance with the planned trajectory at different speeds.The research results can provide a certain basis for the research and development of automotive collision avoidance technology.
文摘This paper presents an optimisatiombased verification process for obstacle avoidance systems of a unicycle-like mobile robot. It is a novel approach for the collision avoidance verification process. Local and global optimisation based verification processes are developed to find the worst-case parameters and the worst-case distance between the robot and an obstacle. The kinematic and dynamic model of the unicycle-like mobile robot is first introduced with force and torque as the inputs. The design of the control system is split into two parts. One is velocity and rotation using the robot dynamics, and the other is the incremental motion planning for robot kinematics. The artificial potential field method is chosen as a path planning and obstacle avoidance candidate technique for verification study as it is simple and widely used. Different optimisation algorithms are applied and compared for the purpose of verification. It is shown that even for a simple case study where only mass and inertia variations are considered, a local optimization based verification method may fail to identify the worst case. Two global optimisation methods have been investigated: genetic algorithms (GAs) and GLOBAL algorithms. Both of these methods successfully find the worst case. The verification process confirms that the obstacle avoidance algorithm functions correctly in the presence of all the possible parameter variations.
文摘The braking behavior of drivers when a pedestrian comes out from the sidewalk to the road was analyzed using a driving simulator. Based on drivers' braking behavior, the braking control timing of the system for avoiding the collision with pedestrians was proposed. In this study, the subject drivers started braking at almost the same time in terms of TTC (Time to Collision), regardless of the velocity of a subject vehicle and crossing velocity of pedestrians. This experimental result showed that brake timing of the system which can minimize the interference for braking between drivers and the system is 1.3 s of TTC. Next, the drivers' braking behavior was investigated when the system controlled braking to avoid collision at this timing. As a result, drivers did not show any change of braking behavior with no excessive interference between braking control by the system and braking operation by drivers for avoiding collisions with pedestrians which is equivalent to the excessive dependence on the system.
基金supported by the Research Project of Advanced Manufacture Technology for Automobile Parts(Chongqing University of Technology)Ministry of Education(Grant No.2015KLMT04)the National Natural Science Foundation of China(Grant No.51375007 and 51605219)
文摘Vehicle collision avoidance system is a kind of auxiliary driving system based on vehicle active safety,which can assist the driver to take the initiative to avoid obstacles under certain conditions,so as to effectively improve the driving safety of vehicle.This paper presents a collision avoidance system for an autonomous vehicle based on an active front steering,which mainly consists of a path planner and a robust tracking controller.A path planner is designed based on polynomial parameterization optimized by simulated annealing algorithm,which plans an evasive trajectory to bypass the obstacle and avoid crashes.The dynamic models of the AFS system,vehicle as well as the driver model are established,and based on these,a robust tracking controller is proposed,which controls the system to resist external disturbances and work in accordance with the planning trajectory.The proposed collision avoidance system is testified through CarSim and Simulink combined simulation platform.The simulation results show that it can effectively track the planning trajectory,and improve the steering stability and anti-interference performance of the vehicle.
基金Project supported by the National Natural Science Foundation o4 China (No. 61300145)
文摘The introduction ofproportional-integral-dorivative (PID) controllers into cooperative collision avoidance systems (CCASs) has been hindered by difficulties in their optimization and by a lack of study of their effects on vehicle driving stability, comfort, and fuel economy. In this paper, we propose a method to optimize PID controllers using an improved particle swarm optimization (PSO) algorithm, and to bettor manipulate cooperative collision avoidance with other vehicles. First, we use PRESCAN and MATLAB/Simulink to conduct a united simulation, which constructs a CCAS composed of a PID controller, maneuver strategy judging modules, and a path planning module. Then we apply the improved PSO algorithm to optimize the PID controller based on the dynamic vehicle data obtained. Finally, we perform a simulation test of performance before and after the optimization of the PID controller, in which vehicles equipped with a CCAS undertake deceleration driving and steering under the two states of low speed (≤50 km/h) and high speed (≥100 km/h) cruising. The results show that the PID controller optimized using the proposed method can achieve not only the basic functions of a CCAS, but also improvements in vehicle dynamic stability, riding comfort, and fuel economy.
基金supported by the National High Technology Research and Development Program of China(Grant No.2011AA040103)the Research Foundationof Shanghai Institute of Technology,China(Grant No.B504)
文摘Formation control and obstacle avoidance for multi-agent systems have attracted more and more attention. In this paper, the problems of formation control and obstacle avoidance are investigated by means of a consensus algorithm. A novel distributed control model is proposed for the multi-agent system to form the anticipated formation as well as achieve obstacle avoidance. Based on the consensus algorithm, a distributed control function consisting of three terms (formation control term, velocity matching term, and obstacle avoidance term) is presented. By establishing a novel formation control matrix, a formation control term is constructed such that the agents can converge to consensus and reach the anticipated formation. A new obstacle avoidance function is developed by using the modified potential field approach to make sure that obstacle avoidance can be achieved whether the obstacle is in a dynamic state or a stationary state. A velocity matching term is also put forward to guarantee that the velocities of all agents converge to the same value. Furthermore, stability of the control model is proven. Simulation results are provided to demonstrate the effectiveness of the proposed control.
基金the State Key Laboratory for Manufacturing System Engineering at Xi'an Jiaotong University. China.
文摘Deadlock avoidance problems are investigated for automated manufacturing systems with flexible routings. Based on the Petri net models of the systems, this paper proposes, for the first time, the concept of perfect maximal resourcetransition circuits and their saturated states. The concept facilitates the development of system liveness characterization and deadlock avoidance Petri net supervisors. Deadlock is characterized as some perfect maximal resource-transition circuits reaching their saturated states. For a large class of manufacturing systems, which do not contain center resources, the optimal deadlock avoidance Petri net supervisors are presented. For a general manufacturing system, a method is proposed for reducing the system Petri net model so that the reduced model does not contain center resources and, hence, has optimal deadlock avoidance Petri net supervisor. The controlled reduced Petri net model can then be used as the liveness supervisor of the system.
基金supported by the National Natural Science Foundation of China(Grant No.51875061)the National Key Research and Development Program of China under Grants(2016YFB0100904).
文摘In active collision avoidance,the trajectory tracking controller determines the deviation from the reference path and the vehicle stability.The main objective of this study was to reduce the tracking error and improve the tracking performance in collision avoidance.Unlike the previously proposed model predictive control(MPC)strategies with constant sampling time,an improved MPC controller with varying sampling time based on the hierarchical control framework was proposed in this paper.Compared with the original MPC tracking controller,the improved MPC controller demonstrated better adaptive capability for the varying road adhesion coefficients and vehicle speed on a curved road.The simulation results revealed that the hierarchical control framework generated an optimal trajectory for collision avoidance in real-time by minimizing the potential field energy.
基金Sponsored by the Science Foundation for Youths of Heilongjiang province (Grant No.QC08C05)
文摘For real-time and distributed features of multi-robot system,the strategy of combining the improved artificial potential field method and the rules based on priority is proposed to study the collision avoidance planning in multi-robot systems. The improved artificial potential field based on simulated annealing algorithm satisfactorily overcomes the drawbacks of traditional artificial potential field method,so that robots can find a local collision-free path in the complex environment. According to the movement vector trail of robots,collisions between robots can be detected,thereby the collision avoidance rules can be obtained. Coordination between robots by the priority based rules improves the real-time property of multi-robot system. The combination of these two methods can help a robot to find a collision-free path from a starting point to the goal quickly in an environment with many obstacles. The feasibility of the proposed method is validated in the VC-based simulated environment.
基金supported by National Basic Research Program of China (973 Program) (No. 2010CB731800)Key Program of National Natural Science Foundation of China (No. 60934003)Key Project for Natural Science Research of Hebei Education Department(No. ZD200908)
文摘This paper considers the problems of target tracking and obstacle avoidance for multi-agent systems. To solve the problem that multiple agents cannot effectively track the target while avoiding obstacle in dynamic environment, a novel control algorithm based on potential function and behavior rules is proposed. Meanwhile, the interactions among agents are also considered. According to the state whether an agent is within the area of its neighbors' influence, two kinds of potential functions are presented. Meanwhile, the distributed control input of each agent is determined by relative velocities as well as relative positions among agents, target and obstacle. The maximum linear speed of the agents is also discussed. Finally, simulation studies are given to demonstrate the performance of the proposed algorithm.
基金supported in part by the National Natural Science Foundation of China (62033009)the Creative Activity Plan for Science and Technology Commission of Shanghai (20510712300,21DZ2293500)the Supported by Science Foundation of Donghai Laboratory。
文摘In this paper, the fixed-time event-triggered obstacle avoidance consensus control for a multi-AUV time-varying formation system in a 3D environment is presented by using an improved artificial potential field and leader-follower strategy(IAPF-LF). Firstly, the proposed fixed-time control can achieve the desired multi-AUV formation within a fixed settling time in any initial system state. Secondly, an event-triggered communication strategy is developed to govern the communication among AUVs, and the communication energy consumption can be decremented. The time-varying formation obstacle avoidance control algorithm based on IAPF-LF is designed to avoid static and dynamic obstacles, the desired formation is maintained in the presence of external disturbances, and there is no Zeno behavior under the fixed-time event-triggered consensus control strategy.The stability of the system is proved by the Lyapunov function and inequality scaling. Finally, simulation examples and water pool experiments are reported to verify the performance of the proposed theoretical algorithms.
基金supported by the National Natural Science Foundation of China(Nos.52005427,61973154)the National Defense Basic Scientific Research Program of China(No.JCKY2018605C004)+1 种基金the Natural Science Research Project of Jiangsu Higher Education Institutions(Nos.19KJB510013,18KJA460009)the Foundation of Graduate Innovation Center in Nanjing University of Aeronautics and Astronautics(No.KFJJ20190516)。
文摘In recent years,multiple-load automatic guided vehicle(AGV)is increasingly used in the logistics transportation fields,owing to the advantages of smaller fleet size and fewer occurrences of traffic congestion.However,one main challenge lies in the deadlock-avoidance for the dispatching process of a multiple-load AGV system.To prevent the system from falling into a deadlock,a strategy of keeping the number of jobs in the system(NJIS)at a low level is adopted in most existing literatures.It is noteworthy that a low-level NJIS will make the processing machine easier to be starved,thereby reducing the system efficiency unavoidably.The motivation of the paper is to develop a deadlock-avoidance dispatching method for a multiple-load AGV system operating at a high NJIS level.Firstly,the deadlock-avoidance dispatching method is devised by incorporating a deadlock-avoidance strategy into a dispatching procedure that contains four sub-problems.In this strategy,critical tasks are recognized according to the status of workstation buffers,and then temporarily forbidden to avoid potential deadlocks.Secondly,three multiattribute dispatching rules are designed for system efficiency,where both the traveling distance and the buffer status are taken into account.Finally,a simulation system is developed to evaluate the performance of the proposed deadlock-avoidance strategy and dispatching rules at different NJIS levels.The experimental results demonstrate that our deadlock-avoidance dispatching method can improve the system efficiency at a high NJIS level and the adaptability to various system settings,while still avoiding potential deadlocks.
基金the National Natural Science Foundation of China(Grant No.51202175)the Youth fund of Jiangsu Natural Science Foundation(Grant No.BK20200423)National Natural Science Foundation of China(Grant No.5210120245).
文摘This paper presents a segmented trajectory planning strategy for active collision avoidance system.Considering the longitudinal and lateral movement of the obstacle vehicle,as well as the ego vehicle and obstacle outer contour limitations,the collision avoidance trajectory is divided into three segments:lane changing,overtaking and back to original lane.The starting point and end point of lane-change are decided based on longitudinal and lateral safety distance model according to the relative speed and distance as well as the outer contour of the two vehicles.Based on system objective function and lane-change trajectory cluster,vehicle states,dynamic constraints and vehicle body kinematics constraints,the optimal trajectory can be selected,which can monitor the relative location of the obstacle vehicle constantly and then ensure the vehicle can accomplish the collision avoidance safely and smoothly.Simulation and experiment results demonstrate the effectiveness and feasibility of proposed trajectory planning strategy for the active collision avoidance.
基金the National Natural Science Foundation of China(51939001,52171292,51979020,61976033)Dalian Outstanding Young Talents Program(2022RJ05)+1 种基金the Topnotch Young Talents Program of China(36261402)the Liaoning Revitalization Talents Program(XLYC20-07188)。
文摘This paper investigates the path-following control problem with obstacle avoidance of autonomous surface vehicles in the presence of actuator faults,uncertainty and external disturbances.Autonomous surface vehicles inevitably suffer from actuator faults in complex sea environments,which may cause existing obstacle avoidance strategies to fail.To reduce the influence of actuator faults,an improved artificial potential function is constructed by introducing the lower bound of actuator efficiency factors.The nonlinear state observer,which only depends on measurable position information of the autonomous surface vehicle,is used to address uncertainties and external disturbances.By using a backstepping technique and adaptive mechanism,a path-following control strategy with obstacle avoidance and fault tolerance is designed which can ensure that the tracking errors converge to a small neighborhood of zero.Compared with existing results,the proposed control strategy has the capability of obstacle avoidance and fault tolerance simultaneously.Finally,the comparison results through simulations are given to verify the effectiveness of the proposed method.
文摘With the improvement of automobile ownership in recent years,the incidence of traffic accidents constantly increases and requirements on the security of automobiles become increasingly higher.As science and technology develops constantly,the development of automobile automatic obstacle avoidance and cruise system accelerates gradually,and the requirement on distance control becomes stricter.Automobile automatic obstacle avoidance and cruise system can determine the conditions of automobiles and roads using sensing technology,automatically adopt measures to control automobile after discovering road safety hazards,thus to reduce the incidence of traffic accidents.To prevent accidental collision of automobile which are installed with automatic obstacle avoidance and cruise system,active brake should be controlled during driving.This study put forward a neural network based proportional-integral-derivative(PID)control algorithm.The active brake of automobiles was effectively controlled using the system to keep the distance between automobiles.Moreover the algorithm was tested using professional automobile simulation platform.The results demonstrated that neural network based PID control algorithm can precisely and efficiently control the distance between two cars.This work provides a reference for the development of automobile automatic obstacle avoidance and cruise system.
文摘The basic composition and working principle of wireless collision avoidance and early warning system based on spread spectrum ranging which is used in urban mass transit is introduced in this paper. Some performance indicators such as maximum measured distance and range errors are theoretically analyzed and numerically calculated. According to the characteristics of the urban mass transit, the applicability of the system is evaluated.
基金supported by the National Natural Science Foundation of China(51875302)。
文摘The forward design of trajectory planning strategies requires preset trajectory optimization functions,resulting in poor adaptability of the strategy and an inability to accurately generate obstacle avoidance trajectories that conform to real driver behavior habits.In addition,owing to the strong time-varying dynamic characteristics of obstacle avoidance scenarios,it is necessary to design numerous trajectory optimization functions and adjust the corresponding parameters.Therefore,an anthropomorphic obstacle-avoidance trajectory planning strategy for adaptive driving scenarios is proposed.First,numerous expert-demonstrated trajectories are extracted from the HighD natural driving dataset.Subsequently,a trajectory expectation feature-matching algorithm is proposed that uses maximum entropy inverse reinforcement learning theory to learn the extracted expert-demonstrated trajectories and achieve automatic acquisition of the optimization function of the expert-demonstrated trajectory.Furthermore,a mapping model is constructed by combining the key driving scenario information that affects vehicle obstacle avoidance with the weight of the optimization function,and an anthropomorphic obstacle avoidance trajectory planning strategy for adaptive driving scenarios is proposed.Finally,the proposed strategy is verified based on real driving scenarios.The results show that the strategy can adjust the weight distribution of the trajectory optimization function in real time according to the“emergency degree”of obstacle avoidance and the state of the vehicle.Moreover,this strategy can generate anthropomorphic trajectories that are similar to expert-demonstrated trajectories,effectively improving the adaptability and acceptability of trajectories in driving scenarios.
基金This work was supported by the Postdoctoral Fund of FDCT,Macao(Grant No.0003/2021/APD).Any opinions,findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect those of the sponsor.
文摘In view of the complex marine environment of navigation,especially in the case of multiple static and dynamic obstacles,the traditional obstacle avoidance algorithms applied to unmanned surface vehicles(USV)are prone to fall into the trap of local optimization.Therefore,this paper proposes an improved artificial potential field(APF)algorithm,which uses 5G communication technology to communicate between the USV and the control center.The algorithm introduces the USV discrimination mechanism to avoid the USV falling into local optimization when the USV encounter different obstacles in different scenarios.Considering the various scenarios between the USV and other dynamic obstacles such as vessels in the process of performing tasks,the algorithm introduces the concept of dynamic artificial potential field.For the multiple obstacles encountered in the process of USV sailing,based on the International Regulations for Preventing Collisions at Sea(COLREGS),the USV determines whether the next step will fall into local optimization through the discriminationmechanism.The local potential field of the USV will dynamically adjust,and the reverse virtual gravitational potential field will be added to prevent it from falling into the local optimization and avoid collisions.The objective function and cost function are designed at the same time,so that the USV can smoothly switch between the global path and the local obstacle avoidance.The simulation results show that the improved APF algorithm proposed in this paper can successfully avoid various obstacles in the complex marine environment,and take navigation time and economic cost into account.
基金supported by the National Natural Science Foundation of China(Grant No.12004049)the Fund of State Key Laboratory of IPOC(BUPT)(Grant Nos.600119525 and 505019124).
文摘We investigate the Floquet spectrum and excitation properties of a two-ultracold-atom system with periodically driven interaction in a three-dimensional harmonic trap.The interaction between the atoms is changed by varying the s-wave scattering length in two ways,the cosine and the square-wave modulations.It is found that as the driving frequency increases,the Floquet spectrum exhibits two main features for both modulations,the accumulating and the spreading of the quasienergy levels,which further lead to different dynamical behaviors.The accumulation is associated with collective excitations and the persistent growth of the energy,while the spread indicates that the energy is bounded at all times.The initial scattering length,the driving frequency and amplitude can all significantly change the Floquet spectrum as well as the dynamics.However,the corresponding relation between them is valid universally.Finally,we propose a mechanism for selectively exciting the system to one specific state by using the avoided crossing of two quasienergy levels,which could guide preparation of a desired state in experiments.
基金Tinajin Research Tnnovation Project for Postgraduate Students:Research on multi-sensor fusion vehicle detection algorithm in complex weather conditions(2020YJSS086).
文摘Road intersections are important nodes for the convergence,turning,and diversion of traffic flows in the urban road network,but at the same time,due to the large traffic volume and conflict points at the intersection,it has become a traffic congestion and accident-prone area,which seriously affects road traffic safety and vehicle traffic efficiency.Therefore,it is of great significance to study the collaborative control strategy of urban intersections.This paper analyzes and summarizes the methods of intersection cooperative control based on intelligent connected vehicles in recent years,and looks forward to the future development trend and prospects of the combination of intersection cooperative control and Vehicle-Infrastructure Cooperation System.