The present study considers wave scattering phenomena around a cylindrical island mounted on a general axisymmetric topography or a general submerged truncated axi-symmetric shoal based on the mild-slope equation. The...The present study considers wave scattering phenomena around a cylindrical island mounted on a general axisymmetric topography or a general submerged truncated axi-symmetric shoal based on the mild-slope equation. The method of separation of variables and Taylor series expansion are invoked to find the approximate solution to the variable water depth region which varies proportionally to an arbitrary power of radial distance. Validations against the solutions for the combined wave refraction and diffraction around a cylindrical island mounted on a paraboloidal shoal of Liu et al. in 2004 and the scattering and trapping of wave energy by a submerged truncated paraboloidal shoal of Lin and Liu in 2007 show excellent agreements as the power of radial distance being equal to two. For the solutions of wave refraction and diffraction around a cylindrical island mounted on a shoal with depth proportionally to an arbitrary power of radial distance, good agreements with Zhai et al.’s(2013) solutions are demonstrated. Since the robustness of the assumption of a general axi-symmetric geometry based on an arbitrary power variability of the radial distance, the present solution can be very conveniently employed to investigate the effects of bottom topography on wave scattering and trapping patterns.展开更多
The present investigation is concerned with an axi-symmetric problem in the electromagnetic micropolar thermoelastic half-space whose surface is subjected to the mechanical or thermal source. Laplace and Hankel transf...The present investigation is concerned with an axi-symmetric problem in the electromagnetic micropolar thermoelastic half-space whose surface is subjected to the mechanical or thermal source. Laplace and Hankel transform techniques are used to solve the problem. Various types of sources are taken to illustrate the utility of the approach. Integral transforms are inverted by using a numerical technique to obtain the components of stresses, temperature distribution, and induced electric and magnetic fields. The expressions of these quantities are illustrated graphically to depict the magnetic effect for two different generalized thermoelasticity theories, i.e., Lord and Shulman (L-S theory) and Green and Lindsay (G-L theory). Some particular interesting cases are also deduced from the present investigation.展开更多
A theoretical analysis for momentum and heat transfer characteristics in a steady narrow axisymmetric laminar jet is made based on the assumption of boundary layer. The types of potential flows necessary for having th...A theoretical analysis for momentum and heat transfer characteristics in a steady narrow axisymmetric laminar jet is made based on the assumption of boundary layer. The types of potential flows necessary for having the similar solutions to boundary layer equations are determined and the analytical solutions are presented for both momentum and energy boundary layer equations. Some transport properties of the jets are展开更多
Two types of elastomeric vibration isolators used for equipment vibration isolation in aerospace vehicles are considered for the present study. These isolators are constructed using elastomers mounted in steel encasin...Two types of elastomeric vibration isolators used for equipment vibration isolation in aerospace vehicles are considered for the present study. These isolators are constructed using elastomers mounted in steel encasings. These isolators are initially deformed statically and dynamic loads are applied on the deformed configuration. To capture the static deformation, equivalent static load corresponding to its load rating and specified displacements are created. Static deformation is computed using Finite Element methods with four node axi-symmetric element which include the geometric non-linear effect for steel and with standard Yeoh hyper-elastic material model for elastomers(Muhammed and Zu, 2012) [1]. Yeoh material constants are derived from uni-axial tension test data of the elastomer specimen. These isolators are subjected to harmonic and random excitations in the pre-deformed state. For numerical analysis, elastomeric constants at dynamic conditions are obtained as complex function of frequency using Dynamic Mechanical Analyzer(DMA) for a range of frequencies. The standard material model of Yeoh is modified incorporating frequency dependant material characteristics and damping in the range of frequencies of interest. A multiplicative non-separable variables law is derived for Yeoh material model to include the effect of static pre-stress, based on the methodology given in literature(Nashif et al.,1985;Beda et al., 2014) [2,3]. The modifications of Yeoh model suitable for frequency domain analysis is the novelty in the present study. In the analysis, while dynamic loads are applied, the configuration is updated considering initial static loading. The frequency response of the isolators is computed using material properties evaluated at progressive dynamic strains until a match in natural frequency is observed. Appropriate damping corrections are then incorporated to match the test observed transmissibility. Then updated material properties are used to compute the random response which showed good agreement with results of experiments, validating the approach taken for the development of this model.展开更多
In the present case, we have studied the effect of magnetic field-dependent viscosity (MFD) along with porosity on the revolving Axi-symmetric steady ferrofluid flow with rotating disk by solving the boundary layer eq...In the present case, we have studied the effect of magnetic field-dependent viscosity (MFD) along with porosity on the revolving Axi-symmetric steady ferrofluid flow with rotating disk by solving the boundary layer equations using Neuringer-Rosensweig (NR) model. Here, we have calculated the velocity components and pressure for different values of MFD viscosity (k) and porosity (ε) with the variation of Karman’s dimensionless parameter α. Also, we have calculated the displacement thickness of the boundary layer and total volume flowing outward the z-axis. The numerical results which are obtained for various flow characteristics are shown graphically.展开更多
A new solver is presented for transonic flow around cone-cylinder, axisymmetric bodies. Ground experiments almost always suffer from uncertainty due to operating in the presence of high levels of facility noise. Besid...A new solver is presented for transonic flow around cone-cylinder, axisymmetric bodies. Ground experiments almost always suffer from uncertainty due to operating in the presence of high levels of facility noise. Besides, experimental measurements of these mechanisms are not available at high-speed flows. Direct Numerical Simulations have made it possible to compute details of the transonic mechanisms but still a significant challenge due to the cost. This study aims to present a new solver to model transonic flows. To assess the new solver, the surface Mach number and the drag coefficient are investigated as the freestream Mach number varies. The results are in excellent agreement with experimental data, indicating the new model is capable of accurately predicting the aerodynamics coefficients at transonic flow regimes.展开更多
This study focuses on the transient analysis of nonlinear dispersion of a polymeric pollutant ejected by an external source into a laminar pipe flow of a Newtonian liquid under axi-symmetric conditions.The influence o...This study focuses on the transient analysis of nonlinear dispersion of a polymeric pollutant ejected by an external source into a laminar pipe flow of a Newtonian liquid under axi-symmetric conditions.The influence of density variation with pollutant concentration is approximated according to the Boussinesq approximation and the nonlinear governing equations of momentum,pollutant concentration are obtained together with and Oldroyd-B constitutive model for the polymer stress.The problem is solved numerically using a semi-implicit finite difference method.Solutions are presented in graphical form for various parameter values and given in terms of fluid velocity,pollutant concentration,polymer stress components,skin friction and wall mass transfer rate.The model can be a useful tool in understanding the dynamics of industrial pollution situations arising from improper discharge of hydrocarbon pollutants into,say,water bodies.The model can also be quite useful for available necessary early warning methods for detecting or predicting the scale of pollution and hence help mitigate related damage downstream by earlier instituting relevant decontamination measures.展开更多
In this paper, the authors discuss an inverse boundary problem for the axisymmetric steady-state heat equation, which arises in monitoring the boundary corrosion for the blast-furnace. Measure temperature at some loca...In this paper, the authors discuss an inverse boundary problem for the axisymmetric steady-state heat equation, which arises in monitoring the boundary corrosion for the blast-furnace. Measure temperature at some locations are used to identify the shape of the corrosion boundary. The numerical inversion is complicated and consuming since the wear-line varies during the process and the boundary in the heat problem is not fixed. The authors suggest a method that the unknown boundary can be represented by a given curve plus a small perturbation, then the equation can be solved with fixed boundary, and a lot of computing time will be saved. A method is given to solve the inverse problem by minimizing the sum of the squared residual at the measuring locations, in which the direct problems are solved by axisymmetric fundamental solution method. The numerical results are in good agreement with test model data as well as industrial data, even in severe corrosion case.展开更多
基金financially supported by the Ministry of Science and Technology of Taiwan,China(Grant No.MOST 107-2221-E-992)
文摘The present study considers wave scattering phenomena around a cylindrical island mounted on a general axisymmetric topography or a general submerged truncated axi-symmetric shoal based on the mild-slope equation. The method of separation of variables and Taylor series expansion are invoked to find the approximate solution to the variable water depth region which varies proportionally to an arbitrary power of radial distance. Validations against the solutions for the combined wave refraction and diffraction around a cylindrical island mounted on a paraboloidal shoal of Liu et al. in 2004 and the scattering and trapping of wave energy by a submerged truncated paraboloidal shoal of Lin and Liu in 2007 show excellent agreements as the power of radial distance being equal to two. For the solutions of wave refraction and diffraction around a cylindrical island mounted on a shoal with depth proportionally to an arbitrary power of radial distance, good agreements with Zhai et al.’s(2013) solutions are demonstrated. Since the robustness of the assumption of a general axi-symmetric geometry based on an arbitrary power variability of the radial distance, the present solution can be very conveniently employed to investigate the effects of bottom topography on wave scattering and trapping patterns.
文摘The present investigation is concerned with an axi-symmetric problem in the electromagnetic micropolar thermoelastic half-space whose surface is subjected to the mechanical or thermal source. Laplace and Hankel transform techniques are used to solve the problem. Various types of sources are taken to illustrate the utility of the approach. Integral transforms are inverted by using a numerical technique to obtain the components of stresses, temperature distribution, and induced electric and magnetic fields. The expressions of these quantities are illustrated graphically to depict the magnetic effect for two different generalized thermoelasticity theories, i.e., Lord and Shulman (L-S theory) and Green and Lindsay (G-L theory). Some particular interesting cases are also deduced from the present investigation.
文摘A theoretical analysis for momentum and heat transfer characteristics in a steady narrow axisymmetric laminar jet is made based on the assumption of boundary layer. The types of potential flows necessary for having the similar solutions to boundary layer equations are determined and the analytical solutions are presented for both momentum and energy boundary layer equations. Some transport properties of the jets are
文摘Two types of elastomeric vibration isolators used for equipment vibration isolation in aerospace vehicles are considered for the present study. These isolators are constructed using elastomers mounted in steel encasings. These isolators are initially deformed statically and dynamic loads are applied on the deformed configuration. To capture the static deformation, equivalent static load corresponding to its load rating and specified displacements are created. Static deformation is computed using Finite Element methods with four node axi-symmetric element which include the geometric non-linear effect for steel and with standard Yeoh hyper-elastic material model for elastomers(Muhammed and Zu, 2012) [1]. Yeoh material constants are derived from uni-axial tension test data of the elastomer specimen. These isolators are subjected to harmonic and random excitations in the pre-deformed state. For numerical analysis, elastomeric constants at dynamic conditions are obtained as complex function of frequency using Dynamic Mechanical Analyzer(DMA) for a range of frequencies. The standard material model of Yeoh is modified incorporating frequency dependant material characteristics and damping in the range of frequencies of interest. A multiplicative non-separable variables law is derived for Yeoh material model to include the effect of static pre-stress, based on the methodology given in literature(Nashif et al.,1985;Beda et al., 2014) [2,3]. The modifications of Yeoh model suitable for frequency domain analysis is the novelty in the present study. In the analysis, while dynamic loads are applied, the configuration is updated considering initial static loading. The frequency response of the isolators is computed using material properties evaluated at progressive dynamic strains until a match in natural frequency is observed. Appropriate damping corrections are then incorporated to match the test observed transmissibility. Then updated material properties are used to compute the random response which showed good agreement with results of experiments, validating the approach taken for the development of this model.
文摘In the present case, we have studied the effect of magnetic field-dependent viscosity (MFD) along with porosity on the revolving Axi-symmetric steady ferrofluid flow with rotating disk by solving the boundary layer equations using Neuringer-Rosensweig (NR) model. Here, we have calculated the velocity components and pressure for different values of MFD viscosity (k) and porosity (ε) with the variation of Karman’s dimensionless parameter α. Also, we have calculated the displacement thickness of the boundary layer and total volume flowing outward the z-axis. The numerical results which are obtained for various flow characteristics are shown graphically.
文摘A new solver is presented for transonic flow around cone-cylinder, axisymmetric bodies. Ground experiments almost always suffer from uncertainty due to operating in the presence of high levels of facility noise. Besides, experimental measurements of these mechanisms are not available at high-speed flows. Direct Numerical Simulations have made it possible to compute details of the transonic mechanisms but still a significant challenge due to the cost. This study aims to present a new solver to model transonic flows. To assess the new solver, the surface Mach number and the drag coefficient are investigated as the freestream Mach number varies. The results are in excellent agreement with experimental data, indicating the new model is capable of accurately predicting the aerodynamics coefficients at transonic flow regimes.
文摘This study focuses on the transient analysis of nonlinear dispersion of a polymeric pollutant ejected by an external source into a laminar pipe flow of a Newtonian liquid under axi-symmetric conditions.The influence of density variation with pollutant concentration is approximated according to the Boussinesq approximation and the nonlinear governing equations of momentum,pollutant concentration are obtained together with and Oldroyd-B constitutive model for the polymer stress.The problem is solved numerically using a semi-implicit finite difference method.Solutions are presented in graphical form for various parameter values and given in terms of fluid velocity,pollutant concentration,polymer stress components,skin friction and wall mass transfer rate.The model can be a useful tool in understanding the dynamics of industrial pollution situations arising from improper discharge of hydrocarbon pollutants into,say,water bodies.The model can also be quite useful for available necessary early warning methods for detecting or predicting the scale of pollution and hence help mitigate related damage downstream by earlier instituting relevant decontamination measures.
基金the National Natural Science Foundation of China(No.10431030).
文摘In this paper, the authors discuss an inverse boundary problem for the axisymmetric steady-state heat equation, which arises in monitoring the boundary corrosion for the blast-furnace. Measure temperature at some locations are used to identify the shape of the corrosion boundary. The numerical inversion is complicated and consuming since the wear-line varies during the process and the boundary in the heat problem is not fixed. The authors suggest a method that the unknown boundary can be represented by a given curve plus a small perturbation, then the equation can be solved with fixed boundary, and a lot of computing time will be saved. A method is given to solve the inverse problem by minimizing the sum of the squared residual at the measuring locations, in which the direct problems are solved by axisymmetric fundamental solution method. The numerical results are in good agreement with test model data as well as industrial data, even in severe corrosion case.