Airfoil is the element of fan blade design. It is strongly anticipated to design a fan of ave- raged high performance over a wide operation range. Multi-point optimization design of airfoil for axial flow fan was prop...Airfoil is the element of fan blade design. It is strongly anticipated to design a fan of ave- raged high performance over a wide operation range. Multi-point optimization design of airfoil for axial flow fan was proposed over specific operation range. Weighted objective function of airfoil lift-drag ratio was constructed for several operation points around the designing one. Airfoil was defined by parametric B-spline curve of limited shape controlling points. Results show that normal standard airfoils have remained spaces to be optimized under specific operation conditions. Airfoil performance is sensitive to flow′s Reynolds number and cascade solidity. Predicting flow transition along airfoil profile is essential to search for optimized one. Optimized airfoil of wide operation range is possible to obtain with prescribed fitness function. Obtainments of multi-point optimization may be relatively lower at design point, but positive obtainments are achieved at off-design ones. Resulted airfoil is specially suitable for axial flow fans operating frequently at off-design point such as air condition coolers.展开更多
Design,optimization and analysis of a new energy efficient 16%thick transonic airfoil were completed for a notional air vehicle concept.The airfoil specifications included a range of Reynolds number per foot from 1.7 ...Design,optimization and analysis of a new energy efficient 16%thick transonic airfoil were completed for a notional air vehicle concept.The airfoil specifications included a range of Reynolds number per foot from 1.7 million to 2.5 million and Mach number from 0.4 to 0.8.Shape optimization in geometry and inverse design modules of the airfoil analysis program MSES were used to design a new 16%thick reference airfoil.The performance of the reference airfoil was then optimized with an objective of minimizing drag coefficient for 7 design points with conflicting requirements in Reynolds and Mach number by using the MSES/LINDOP optimizer.The optimization results in an upward shift of drag bucket in the direction of higher lift coefficient.Both surface pressure distribution and Mach contour plots show that supersonic compression waves on airfoil surface are terminated at Mach 0.78 with a normal shock wave and associated flow separation,which causes not only a decrease of the maximum suction pressure,but also a decrease in lift and increase in drag coefficient.The new optimized airfoil shows robust performance when operating within the specified design constraints.展开更多
Based on the shaping theory of writhed blade in streamline design, the geometric shape of blade is designed and then computational formulas for the dynamic design of the fan with writhed blades in gas-particle two-pha...Based on the shaping theory of writhed blade in streamline design, the geometric shape of blade is designed and then computational formulas for the dynamic design of the fan with writhed blades in gas-particle two-phase axial-flow are derived with the two-phase continuum coupling model. Concurrently, the correlation between the structure of impeller and flow-field dynamic functional parameters is presented. Further, the software for the optimization design of the gas-particle two-phase axial-flow fan with writhed blades is obtained. By means of the available software, a sample fan is formed, and its all dynamic characteristic curves and its geometric shape are presented. Finally, the conclusion on the effect of particles on fan running is reached quantitatively and qualitatively, as is expected in the fan industry.展开更多
Off-statistics input data sets are common in axial-flow fans design and may easily result in some violation of the requirements of a good aerodynamic blade design.In order to circumvent this problem,in the present pap...Off-statistics input data sets are common in axial-flow fans design and may easily result in some violation of the requirements of a good aerodynamic blade design.In order to circumvent this problem,in the present paper,a solution to the radial equilibrium equation is found which minimizes the outlet kinetic energy and fulfills the aerodynamic constraints,thus ensuring that the resulting blade has acceptable aerodynamic performance.The presented method is based on the optimization of a three-parameters vortex law and of the meridional channel size.The aerodynamic quantities to be employed as constraints are individuated and their suitable ranges of variation are proposed.The method is validated by means of a design with critical input data values and CFD analysis.Then,by means of systematic computations with different input data sets,some correlations and charts are obtained which are analogous to classic correlations based on statistical investigations on existing machines.Such new correlations help size a fan of given characteristics as well as study the feasibility of a given design.展开更多
为探究跨声速工况下超临界翼型RAE2822带下表面射流(jet on the lower surface of trailing edge,LSTE jet)的气动力特性,采用Navier-Stokes(Reynolds Average Navier-Stokes,RANS)控制方程结合Spalart-Allmaras(SA)湍流模型的方法进行...为探究跨声速工况下超临界翼型RAE2822带下表面射流(jet on the lower surface of trailing edge,LSTE jet)的气动力特性,采用Navier-Stokes(Reynolds Average Navier-Stokes,RANS)控制方程结合Spalart-Allmaras(SA)湍流模型的方法进行数值模拟分析。研究发现,在上翼面存在激波的情况下,下表面射流在增大翼型升力的同时也增大了波阻。提出下表面射流伴随优化进程的射流翼型一体优化思路。采用基于Kriging代理模型的优化方法,以最大化升阻比为目标,对RAE2822翼型分别进行了基准外形优化和带下表面射流(cμ=0.0002)的翼型优化。结果表明:在Ma=0.73、Re=6.5×10^(6)、α=2°的工况下,相较于基准翼型,下表面射流翼型等效升阻比提高了4.9%,下表面射流优化翼型等效升阻比提高了26.2%。带下表面射流翼型的射流翼型一体优化设计方法,能够显著提高超临界翼型的等效升阻比,研究结果有助于下表面射流的应用研究。展开更多
The present study introduces an innovative aerodynamic redesign of an axial flow fan based on constant diffusion factor and radial equilibrium.All input design parameters such as mass flow rate,hub to tip ratio,aspect...The present study introduces an innovative aerodynamic redesign of an axial flow fan based on constant diffusion factor and radial equilibrium.All input design parameters such as mass flow rate,hub to tip ratio,aspect ratio,tip diameter and angular velocity are taken from NASA Rotor 67 as a conventional axial flow fan.A computer program is developed to extract the three-dimensional geometry of a fan and to estimate the span-wise distribution of parameters.The new designed fan flow field is investigated in detail by CFD tool at both design and off design conditions.Finally,a turbofan cycle analysis is conducted based on thermodynamic and gas dynamic principles to evaluate the fan performance in a turbofan engine in comparison to NASA Rotor 67.Achieving a higher total pressure ratio,meeting the target pressure ratio in lower rotational speed with higher efficiency,delivering more bypass air in a constant diameter and less fuel consumption for the same specific thrust force are the main advantages for the new design strategy in comparison to the conventional designed fans such as Rotor 67.However,efficiency reduction in fan over speed is the main disadvantage.展开更多
Natural ice accretion on the lifting surface of an aircraft is detrimental to its aerodynamic performance, as it changes the effective streamlined body. The main focus of this work considers the optimization design of...Natural ice accretion on the lifting surface of an aircraft is detrimental to its aerodynamic performance, as it changes the effective streamlined body. The main focus of this work considers the optimization design of airfoils under atmospheric icing conditions for the Unmanned Aerial Vehicle(UAV). The ice formation process is simulated by the Eulerian approach and the three-dimensional Myers model. A three-equation turbulence model is implemented to accurately predict the stall performance of the iced airfoil. In recognition of the real atmospheric variability in the icing parameters, the medium volume diameter of supercooled water droplets is treated as an uncertainty with an assumed probability density function. A technique of polynomial chaos expansion is used to propagate the input uncertainty through the deterministic system. The numerical results show that the multipoint/multiobjective optimization strategy can efficiently improve both the ice tolerance and the cruise performance of an airfoil. The reason for the focus on robust optimization is that the ice angle of the optimized airfoil becomes less critical to the incoming flow.The optimized airfoils are applied to a UAV platform, in which the performance improvement and the relevant key flow feature are both preserved.展开更多
基金Strategic Leading Project of Shanghai Municipal Science Committee(16DZ1121202)
文摘Airfoil is the element of fan blade design. It is strongly anticipated to design a fan of ave- raged high performance over a wide operation range. Multi-point optimization design of airfoil for axial flow fan was proposed over specific operation range. Weighted objective function of airfoil lift-drag ratio was constructed for several operation points around the designing one. Airfoil was defined by parametric B-spline curve of limited shape controlling points. Results show that normal standard airfoils have remained spaces to be optimized under specific operation conditions. Airfoil performance is sensitive to flow′s Reynolds number and cascade solidity. Predicting flow transition along airfoil profile is essential to search for optimized one. Optimized airfoil of wide operation range is possible to obtain with prescribed fitness function. Obtainments of multi-point optimization may be relatively lower at design point, but positive obtainments are achieved at off-design ones. Resulted airfoil is specially suitable for axial flow fans operating frequently at off-design point such as air condition coolers.
文摘Design,optimization and analysis of a new energy efficient 16%thick transonic airfoil were completed for a notional air vehicle concept.The airfoil specifications included a range of Reynolds number per foot from 1.7 million to 2.5 million and Mach number from 0.4 to 0.8.Shape optimization in geometry and inverse design modules of the airfoil analysis program MSES were used to design a new 16%thick reference airfoil.The performance of the reference airfoil was then optimized with an objective of minimizing drag coefficient for 7 design points with conflicting requirements in Reynolds and Mach number by using the MSES/LINDOP optimizer.The optimization results in an upward shift of drag bucket in the direction of higher lift coefficient.Both surface pressure distribution and Mach contour plots show that supersonic compression waves on airfoil surface are terminated at Mach 0.78 with a normal shock wave and associated flow separation,which causes not only a decrease of the maximum suction pressure,but also a decrease in lift and increase in drag coefficient.The new optimized airfoil shows robust performance when operating within the specified design constraints.
文摘Based on the shaping theory of writhed blade in streamline design, the geometric shape of blade is designed and then computational formulas for the dynamic design of the fan with writhed blades in gas-particle two-phase axial-flow are derived with the two-phase continuum coupling model. Concurrently, the correlation between the structure of impeller and flow-field dynamic functional parameters is presented. Further, the software for the optimization design of the gas-particle two-phase axial-flow fan with writhed blades is obtained. By means of the available software, a sample fan is formed, and its all dynamic characteristic curves and its geometric shape are presented. Finally, the conclusion on the effect of particles on fan running is reached quantitatively and qualitatively, as is expected in the fan industry.
文摘Off-statistics input data sets are common in axial-flow fans design and may easily result in some violation of the requirements of a good aerodynamic blade design.In order to circumvent this problem,in the present paper,a solution to the radial equilibrium equation is found which minimizes the outlet kinetic energy and fulfills the aerodynamic constraints,thus ensuring that the resulting blade has acceptable aerodynamic performance.The presented method is based on the optimization of a three-parameters vortex law and of the meridional channel size.The aerodynamic quantities to be employed as constraints are individuated and their suitable ranges of variation are proposed.The method is validated by means of a design with critical input data values and CFD analysis.Then,by means of systematic computations with different input data sets,some correlations and charts are obtained which are analogous to classic correlations based on statistical investigations on existing machines.Such new correlations help size a fan of given characteristics as well as study the feasibility of a given design.
文摘为探究跨声速工况下超临界翼型RAE2822带下表面射流(jet on the lower surface of trailing edge,LSTE jet)的气动力特性,采用Navier-Stokes(Reynolds Average Navier-Stokes,RANS)控制方程结合Spalart-Allmaras(SA)湍流模型的方法进行数值模拟分析。研究发现,在上翼面存在激波的情况下,下表面射流在增大翼型升力的同时也增大了波阻。提出下表面射流伴随优化进程的射流翼型一体优化思路。采用基于Kriging代理模型的优化方法,以最大化升阻比为目标,对RAE2822翼型分别进行了基准外形优化和带下表面射流(cμ=0.0002)的翼型优化。结果表明:在Ma=0.73、Re=6.5×10^(6)、α=2°的工况下,相较于基准翼型,下表面射流翼型等效升阻比提高了4.9%,下表面射流优化翼型等效升阻比提高了26.2%。带下表面射流翼型的射流翼型一体优化设计方法,能够显著提高超临界翼型的等效升阻比,研究结果有助于下表面射流的应用研究。
文摘The present study introduces an innovative aerodynamic redesign of an axial flow fan based on constant diffusion factor and radial equilibrium.All input design parameters such as mass flow rate,hub to tip ratio,aspect ratio,tip diameter and angular velocity are taken from NASA Rotor 67 as a conventional axial flow fan.A computer program is developed to extract the three-dimensional geometry of a fan and to estimate the span-wise distribution of parameters.The new designed fan flow field is investigated in detail by CFD tool at both design and off design conditions.Finally,a turbofan cycle analysis is conducted based on thermodynamic and gas dynamic principles to evaluate the fan performance in a turbofan engine in comparison to NASA Rotor 67.Achieving a higher total pressure ratio,meeting the target pressure ratio in lower rotational speed with higher efficiency,delivering more bypass air in a constant diameter and less fuel consumption for the same specific thrust force are the main advantages for the new design strategy in comparison to the conventional designed fans such as Rotor 67.However,efficiency reduction in fan over speed is the main disadvantage.
基金supported by the National Key Project of China(No.GJXM92579)the National Natural Science Foundation of China(Nos.92052203 and 11872230 and 91852108)。
文摘Natural ice accretion on the lifting surface of an aircraft is detrimental to its aerodynamic performance, as it changes the effective streamlined body. The main focus of this work considers the optimization design of airfoils under atmospheric icing conditions for the Unmanned Aerial Vehicle(UAV). The ice formation process is simulated by the Eulerian approach and the three-dimensional Myers model. A three-equation turbulence model is implemented to accurately predict the stall performance of the iced airfoil. In recognition of the real atmospheric variability in the icing parameters, the medium volume diameter of supercooled water droplets is treated as an uncertainty with an assumed probability density function. A technique of polynomial chaos expansion is used to propagate the input uncertainty through the deterministic system. The numerical results show that the multipoint/multiobjective optimization strategy can efficiently improve both the ice tolerance and the cruise performance of an airfoil. The reason for the focus on robust optimization is that the ice angle of the optimized airfoil becomes less critical to the incoming flow.The optimized airfoils are applied to a UAV platform, in which the performance improvement and the relevant key flow feature are both preserved.